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ABSTRACT

Interpretable Speech Representation and Editing

Max Morrison

Generative machine learning has begun to revolutionize how we develop media con-

tent, including speech content for podcasts, social media, film dialogue, and video game

dialogue. In this dissertation, I describe my research contributions using recent ma-

chine learning techniques to advance speech editing technologies. Contributions include

advances in the state-of-the-art in speech representation (e.g., pitch, periodicity, and pro-

nunciation representations) and controllable speech synthesis (e.g., improved editing qual-

ity and accuracy), as well as novel editing capabilities such as fine-grained pronunciation

control and editing the timbral correlates of volume.
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2.1 Statistics of each of the datasets used to train or evaluate PPGs. 54

2.2 Objective evaluation of pitch estimation | Pitch error and

speed of my baselines, my proposed model, and common open-source

models on both PTDB and MDB-stem-synth datasets. Pitch error

in cents (∆¢) and real-time factor (RTF) metrics are described in

Sections 2.2.5- 2.2.5.3. I consider FCNF0++ to be most useful model

for most downstream applications, with competitive accuracy and

speed. ↑ indicates that higher is better and ↓ indicates that lower is

better. 74

2.3 Ablations of my proposed methods described in Section 2.2. For

example, “Early stopping” is FCNF0++ trained with early stopping

and “Voiced only” is FCNF0++ trained only on voiced frames. Note

that rows are not cumulative: each row independently evaluates

removing exactly one of my suggested improvements (see Section 2.2)

relative to my proposed FCNF0++ model. All models are trained

and evaluated on both PTDB and MDB-stem-synth datasets. Pitch

error in cents (∆¢) and voiced/unvoiced F1 metrics are described in
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Sections 2.3.2- 2.2.5. ↑ indicates that higher is better and ↓ indicates

that lower is better. 75

2.4 Objective evaluation of periodicity | Voiced/unvoiced F1 score

of periodicity estimation using my baselines, my proposed model,

and common open-source models on both PTDB and MDB-stem-

synth datasets. The voiced/unvoiced F1 metric is described in

Section 2.3.2. Baseline models torchcrepe and PYIN are described

in Section 2.2.5.4. ↑ indicates that higher is better and ↓ indicates

that lower is better. †PYIN uses the sum of peak-picked densities for

periodicity decoding. 78

3.1 Speech reconstruction results | Objective and subjective

evaluation of speech reconstruction using Mel spectrograms

(Section 1.1.2) or my disentangled, interpretable representation

(Chapter 2; Figure 1.2). Objective evaluation metrics are defined

in Section 3.3.1 and my subjective evaluation is described in

Sections 3.3.2 and 3.4. ↑ indicates that higher is better and ↓ indicates

that lower is better. 104

4.1 Pitch-shifting results | Results of pitch-shifting by ±600 cents

using my proposed system and two DSP baselines. Objective metrics

are defined in Section 3.3.1). ↑ indicates that higher is better and ↓

indicates that lower is better. 112
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4.2 Time-stretching results | Objective and subjective results of

time-stretching by factors of
√

2 and
√

2/2. ↑ indicates that higher is

better and ↓ indicates that lower is better. 115

4.3 Results for editing volume and timbral correlates of volume

| Objective results of jointly editing volume and its timbral correlates,

and subjective evaluation of disentangled editing of the timbral

correlates of volume by first performing joint editing and then

DSP-based A-weighted loudness matching at the frame resolution.

Reconstruction objective metrics included to highlight the accuracy

of editing relative to reconstruction. Objective evaluation metrics

are defined in Section 3.3.1. ↑ indicates that higher is better and ↓

indicates that lower is better. 121

4.4 Objective evaluation of speaker adaptation | Speech editing

accuracy of fine-tuning for 10,000 steps on 10 speakers (5 male;

5 female) speakers from the DAPS [82] dataset compared to

multispeaker performance of the base model on held-out data from

speaker seen during training. Reported results are averages over

pitch-shifting (by ±600 cents), time-stretching (by factors
√

2 and

√
2/2), loudness edits (by ±5 dBA), and reconstruction. ↑ indicates

that higher is better and ↓ indicates that lower is better. 129

4.5 Objective evaluation of ablations | Non-cumulative ablations

of the speech editing accuracy of methods proposed throughout

my dissertation as well as the section in which they are described.
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Reported results are averages over pitch-shifting (by ±600 cents),

time-stretching (by factors
√

2 and
√

2/2), loudness edits (by ±5

dBA), and reconstruction. ↑ indicates that higher is better and ↓

indicates that lower is better. 142

5.1 Open-source, pip-installable code repositories containing my

work described in my dissertation. Does not include my support

code libraries (e.g., torchutil), my libraries containing baseline

models (e.g., torchcrepe or psola), or my fast Viterbi decoding

implementation (torbi; Section 2.2.4), which I plan to release within

PyTorch [87] instead of distributing via PyPi. 152

https://github.com/maxrmorrison/torchutil
https://github.com/maxrmorrison/torchcrepe
https://github.com/maxrmorrison/psola
https://github.com/maxrmorrison/torbi
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List of Figures

1.1 (top) Audio waveform of the speech utterance “I am sitting in a room,

different from the one you are in now.” (middle) The corresponding

magnitude spectrogram depicting the distribution of energy across the

frequency spectrum. (bottom) The corresponding Mel spectrogram,

which reallocates more representational capacity to better capture

the relevant frequency range for speech processing. The black line

overlaying the lowest yellow band indicates the fundamental frequency

(F0), while the parallel, higher-frequency bands indicate harmonics

H1 (green), H2 (red), H3 (blue), and H4 (yellow). Harmonic

estimation is performed using my proposed neural pitch estimator

(Section 2.2) and Viterbi-based estimation method (Section 4.4).

figure-1-1-sitting.wav1 36

1.2 My proposed speech representation (Chapter 2) and speech

editing system (Chapter 3) | Input audio (Arnold Schwarzenegger

saying “I’ll be back” from the movie The Terminator) is first

encoded in my proposed disentangled and interpretable representation

(Chapter 2) consisting of a sparse phonetic posteriorgram (SPPG)

(Section 2.1), Viterbi-decoded neural pitch estimation (Section 2.2),
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entropy-based periodicity (Section 2.3), and multi-band A-weighted

loudness. In the visualization of SPPGs (top; blue), Unused

phonemes with maximal probability less than 10% are omitted for

clarity. For interpretability and more intuitive control, I visualize the

single-band A-weighted loudness instead of my proposed multi-band

A-weighted loudness (Section 2.4; Figure 2.8). Speech content

creators and producers edit the interpretable representation as well

as the speaker identity (Section 3.2.2) and augmentation ratios

(Section 3.2.1) to perform a variety of high-fidelity speech editing

operations (Chapter 4) such as fine-grained (i.e., frame resolution)

pitch-shifting, time-stretching, and loudness editing, as well as global

(i.e., applied to the entire speech recording) editing of speaker identity

and spectral balance.

figure-1-2-schwarzenegger.wav 41

2.1 Neural phonetic posteriorgrams (PPGs) | My proposed

method for producing PPGs using a neural network. I extract

an audio representation (e.g., a Mel spectrogram; middle) from

speech (bottom) and train a neural network to infer a time-varying

categorical distribution over phoneme categories (i.e., a PPG; top).

figure-1-2-schwarzenegger.wav 49

2.2 Sparse phonetic posteriorgrams (SPPGs) (left) An overlay of

a PPG and its corresponding SPPG (using Percentile-k sparsification

with k = 0.85). Blue indicates PPGs, red indicates SPPGs, and
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violet indicates agreement between PPGs and SPPGs. (right) Red

indicates disagreement between SPPGs and PPGs. For both plots,

only phonemes with a maximal probability above 0.1% are depicted.

figure-2-2-0070-000751.wav 52

2.3 Average framewise phoneme accuracy | Accuracy of PPGs

computed from five input representations. The wav2vec 2.0 [7]

input representation has the best PPG accuracy when averaged

over all datasets (see legend). N.B. The base wav2vec 2.0 model

of Charsiu [127] was trained on some of my Common Voice test

partition as well as the TIMIT training partition, making Charsiu’s

results on those datasets unreliable upper bounds. 57

2.4 Acoustic phoneme similarities | (top) Row b column c is

lnSb,c = lnE
[
λcGc,t;λbGb,t ≥ λzGz,t ∀z

]
, the log of the average

class-weighted probability assigned to phoneme c when phoneme b is

the maximum model prediction. Averages are taken over all frames of

my validation partition of Common Voice [3] using my PPG model

trained with class-balancing on Mel spectrogram inputs. Red boxes

show that the corresponding unvoiced fricative (/f/, /s/, /sh/) to each

voiced fricative (/v/, /z/, /zh/) is assigned relatively high probability,

and vice versa. Class-balanced training and class-weighting are used

to remove column banding indicative of natural phoneme frequency.

Remaining column banding (e.g., “ah” is brighter than “ao”) is caused

by differences in self-similarity (i.e., the yellow diagonal). (bottom)
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Zooming in to the row of voiced fricative “v” demonstrates that

corresponding unvoiced fricative “f” is usually the next most likely

prediction when “v” is most likely. 60

2.5 Pitch posteriorgrams D ∈ R|F |×T produced by my reimplementation

of the baseline FCNF0 pitch tracker [2] (middle) and my proposed

FCNF0++ (bottom), where Df,t = p(yt = f |xt) is the time-varying

categorical distribution produced by performing inference on adjacent

input audio frames x1, . . . , xT . The input audio (top) is the same as

in Figure 1.1: the speech utterance “I am sitting in a room, different

from the one you are in now”. To produce these visualizations, I apply

softmax to the |F |-dimensional network logits inferred for each time

frame to produce normalized distributions and take the natural log.

Greater brightness indicates higher probability. The y-axis frequency

ranges are representative of the pitch bin ranges of the baseline and

proposed models. My proposed methods produce a sharper peak

during pitched frames and encourage uniform probability in unpitched

regions, making it easy to identify these regions algorithmically

(Section 2.3).

figure-1-1-sitting.wav 67

2.6 Decoding methods for neural pitch estimation | I compare

Viterbi decoding with linear interpolation of unvoiced regions. (top)

Pitch contours produced via each decoding method. (bottom)

entropy-based periodicity contour (black) (Section 2.3) and three
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voiced/unvoiced periodicity thresholds. No voiced/unvoiced threshold

α exists that sufficiently separates voiced and unvoiced frames to

remove spurious, large pitch jumps in unvoiced regions. Viterbi

decoding mitigates this issue and produces relatively smooth pitch

contours within unvoiced regions while maintaining high accuracy in

voiced regions.

figure-2-6-0016-000174.wav 70

2.7 Hyperparameter landscape of the voiced/unvoiced threshold on

the entropy-based periodicity estimate produced by FCNF0++

with (blue) and without (orange) my proposed unvoiced training

strategy (Section 2.2.3) on PTDB and MDB-stem-synth. Stars

indicate optimal F1 values found via a fine-grained binary search

(Section 2.3.2). My unvoiced training strategy of selecting a random

bin (Section 2.2.3) improves the optimal F1 score of the model and

produces state-of-the-art voiced/unvoiced classification F1 scores

across a large region of the hyperparameter space. 79

2.8 Multi-band A-weighted loudness | My proposed multi-band

A-weighted loudness for interpolating the trade-off between

disentanglement and loudness reconstruction. (top) A-weighted

magnitude spectrogram (equivalently, a 513-band A-weighted

loudness). (bottom) Single-band A-weighted loudness. (middle)

From top to bottom, the 16-band, 8-band (optimal), and 4-band
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A-weighted loudness.

figure-2-8-0097-000680.wav 86

3.1 Variable-width pitch quantization | (left) Training distribution

of pitch bins in VCTK before my proposed data augmentation

(Section 3.2.1) and variable-width pitch quantization (Section 3.2.2).

(middle) The same distribution after augmentation. (right) The

same distribution after augmentation and variable-width quantization.

My proposed variable-width pitch quantization transforms the spacing

of the 256 pitch bins to produce a uniform training distribution, which

corresponds to the maximum-entropy distribution (ln 256 = 5.545). 94

3.2 Speech reconstruction overview | I (1) encode an example

speech utterance in my proposed representation (left), (2) perform

speech synthesis (top), (3) encode the synthesized speech in my

representation (right), and (4) overlay the speech representation

inferred from synthesized speech on the input representation to

demonstrate the reconstruction accuracy of my speech representation

(center). Blue SPPGs are inputs, red SPPGs are inferred from

synthesized speech, and violet indicates accurate reconstruction. For

pitch, periodicity, and A-weighted loudness, the features inferred from

synthesized speech are shown in black, while input features are green

when the inferred feature is within an error threshold and red when

outside that threshold. I use a threshold of 50 cents for pitch, 0.1 for

periodicity, and 6 dBA for volume.
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figure-3-2-0016-000442-original.wav

figure-3-2-0016-000442-reconstructed.wav 96

3.3 Reproducible subjective evaluation (ReSEval) system flow | A

researcher creates a subjective evaluation by providing a configuration

file and a directory of evaluation files as input. ReSEval creates

a crowdsource task and recruits participants via, e.g., Amazon

Mechanical Turk (MTurk). Participants complete the task, producing

evaluation data for analysis. ReSEval analyzes the evaluation data

and presents the researcher with a statistical analysis. With ReSEval,

the researcher does not have to perform any web development. As

well, aside from a one-time acquisition of API keys, the researcher

does not have to interact with any third-party services (e.g., MTurk,

Heroku, or Amazon Web Services). Instead, ReSEval performs all of

the necessary interactions with third-party services to configure and

manage databases, servers, file storage, and crowdsourcing on behalf

of the researcher. 103

3.4 Noise floor reconstruction | Single-band A-weighted loudness of

original speech and speech reconstruction using my proposed speech

representation (Chapter 2). The majority of loudness reconstruction

error (Table 3.1) can be attributed to my proposed representation not

reconstructing the exact noise floor of the speech recording. Note that

it is straightforward to copy/paste the silent regions of the original

audio into the edited audio and apply crossfades to produce the exact
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noise floor.

figure-3-4-0016-000321.wav 105

3.5 Speech reconstruction example | I (1) encode an example

speech utterance in my proposed representation (Chapter 2), (2)

perform speech synthesis, (3) encode the synthesized speech in my

representation, and (4) overlay the speech representation inferred from

synthesized speech on the input representation to demonstrate the

reconstruction accuracy of my speech representation. Blue SPPGs

(top) are inputs, red SPPGs are inferred from synthesized speech,

and violet indicates accurate reconstruction. For pitch, periodicity,

and A-weighted loudness, the features inferred from synthesized

speech are shown in black, while input features are green when the

inferred feature is within an error threshold and red when outside that

threshold. I use a threshold of 50 cents for pitch, 0.1 for periodicity,

and 6 dBA for volume.

figure-3-5-0108-000345-original.wav

figure-3-5-0108-000345-reconstructed.wav 107

4.1 Subjective evaluation interface for pitch-shifting and time-

stretching | Participants recruited on Amazon Mechanical Turk

listen to 15 sets of three audio files, where each set consists of

the same edit (a pitch-shift or time-stretch) applied to an original

audio recording using three methods: (1) my proposed method for
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pitch-shifting (Section 4.1) or time-stretching (Section 4.2) as well as

DSP baselines (2) TD-PSOLA [80] and (3) WORLD [69]. 111

4.2 Pitch-shifting example | I (1) encode an example speech utterance

in my proposed representation (Chapter 2), (2) modify the pitch by

−600 (left) and +600 (right) cents, (3) perform speech synthesis

using the modified pitch contours to produce pitch-shifted speech, (4)

encode the pitch-shifted speech in my representation, and (5) overlay

the speech representation inferred from pitch-shifted speech on the

input representation (after the ±600 cent shift has been applied) to

demonstrate pitch disentanglement. N.B., the pitch range (i.e.,

the y-axis) varies between the left and right figure. Blue

SPPGs (top) are inputs, red SPPGs are inferred from pitch-shifted

speech, and violet indicates accurate reconstruction. For pitch,

periodicity, and A-weighted loudness, the features inferred from

pitch-shifted speech are shown in black, while input features are

green when the inferred feature is within an error threshold and red

when outside that threshold. I use a threshold of 50 cents for pitch,

0.1 for periodicity, and 6 dBA for volume.

figure-4-2-0108-000430-original.wav

figure-4-2-0108-000430-(-600¢).wav

figure-4-2-0108-000430-(+600¢).wav 113

4.3 Comparing voiced/unvoiced decisions from periodicity and

PPGs | (top) SPPG (Section 2.1) with voiced phonemes in green
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and unvoiced phonemes in red. (middle) Entropy-based periodicity

(Section 2.3) with voiced frames in green, unvoiced frames in red,

and voicing threshold α in orange. (bottom) Voicing decisions

derived from the SPPG (blue) and periodicity (orange). The

SPPG framewise voiced/unvoiced decisions exhibit clearly improved

alignment with voiced and unvoiced phonemes.

figure-4-3-0083-000365.wav 116

4.4 Time-stretching example | I (1) encode an example speech

utterance in my proposed representation (Chapter 2), (2) interpolate

the voiced and silent frames of my proposed representation to increase

(left) or decrease (right) the total duration by a factor of
√

2, (3)

perform speech synthesis using the interpolated representation to

produce time-stretched speech, (4) encode the time-stretched speech

in my representation, and (5) overlay the speech representation

inferred from time-stretched speech on the input representation (after

interpolation) to demonstrate the preservation of speech features

during time-stretching. N.B., the duration (i.e., the x-axis)

varies between the left and right figure. Blue SPPGs (top)

are inputs, red SPPGs are inferred from time-stretched speech, and

violet indicates accurate reconstruction. For pitch, periodicity, and

A-weighted loudness, the features inferred from synthesized speech

are shown in black, while input features are green when the inferred

feature is within an error threshold and red when outside that



20

threshold. I use a threshold of 50 cents for pitch, 0.1 for periodicity,

and 6 dBA for volume.

figure-4-4-0082-000568-original.wav

figure-4-4-0082-000568-(0.71x).wav

figure-4-4-0082-000568-(1.41x).wav 118

4.5 Frequency spectra of speech reconstruction and volume-

matched editing of timbral correlates of volume | I modify the

single-band A-weighted loudness (Section 2.4) of an unedited speech

recording by 0 (i.e., reconstruction; blue), −10 (orange), and +10

dBA (green) using my proposed method for jointly editing volume

and its timbral correlates. I then perform frame-resolution A-weighted

loudness matching using DSP-based gain scaling (Section 3.2.1) with

the original audio. This produces reconstructed and perceptual-

loudness-edited speech recordings with equal volume. I plot the

frequency spectra of speech reconstruction as well as volume-matched

editing of the timbral correlates of volume to show that my proposed

method captures the expected behavior of perceptually louder speech

having relatively more high-frequency content. In voice quality

literature, this increase in the relative amount of high-frequency

content has been found to explain over 20% of intraspeaker acoustic

variations [54]. Likewise, most musical instruments produce relatively

more high frequency content when played with more input energy

(e.g., hitting a drum harder or bowing a violin string faster or with
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more pressure). My proposed system learns the timbral correlates of

volume within a speech dataset and enables disentangled control.

figure-4-5-0073-000047-original.wav

figure-4-5-0073-000047-reconstruction.wav

figure-4-5-0073-000047-(-10dBA).wav

figure-4-5-0073-000047-(+10dBA).wav 122

4.6 Example of jointly editing volume and the timbral correlates

of volume | I (1) encode a speech utterance in my proposed

representation (Chapter 2), (2) modify the single-band A-weighted

loudness by −10 (left) and +10 (right) dBA, (3) perform speech

synthesis using modified A-weighted loudness to produce speech

in which volume and its timbral correlates are jointly edited, (4)

encode the synthesized speech in my representation, and (5) overlay

the speech representation inferred from synthesized speech on the

input representation (after ±10 dBA edits have been applied to the

A-weighted loudness) to demonstrate accurate reconstruction of input

features during loudness and volume editing. Blue SPPGs (top)

are inputs, red SPPGs are inferred from synthesized speech, and

violet indicates accurate reconstruction. For pitch, periodicity, and

A-weighted loudness, the features inferred from synthesized speech

are shown in black, while input features are green when the inferred

feature is within an error threshold and red when outside that

threshold. I use a threshold of 50 cents for pitch, 0.1 for periodicity,
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and 6 dBA for volume. N.B., the loudness range (i.e., the

y-axis) varies between the left and right figure.

figure-4-6-0037-000659-original.wav

figure-4-6-0037-000659-(-10dBA).wav

figure-4-6-0037-000659-(+10dBA).wav 123

4.7 Spectral balance editing example | I (1) encode a speech

utterance in my proposed representation (Chapter 2), (2) perform

speech synthesis using the encoded representation with resampling

augmentation factors (Section 3.2.1) of rf =
√

2/2 (left) and rf =
√

2

(right), (3) encode the synthesized speech in my representation, and

(4) overlay my speech representation inferred from synthesized speech

on the input representation to demonstrate accurate reconstruction

while editing the spectral balance. My editing method produces

corresponding changes in vowels in the inferred SPPG, such as

predicting “ao” instead of “aa” (right) and “ay” instead of “eh”

(left). To further demonstrate this behavior, Figure 4.8 zooms in

on just the phonemes that were changed in the SPPG. Blue SPPGs

(top) are inferred from a recording of the source speaker, red SPPGs

are inferred from speech synthesized with modified spectral balance,

and violet indicates accurate reconstruction. For pitch, periodicity,

and A-weighted loudness, features inferred from synthesized speech

are shown in black, while input features are green when the inferred

feature is within an error threshold and red when outside that
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threshold. I use a threshold of 50 cents for pitch, 0.1 for periodicity,

and 6 dBA for volume.

figure-4-7-0047-000757-original.wav

figure-4-7-0047-000757-(r f=0.71).wav

figure-4-7-0047-000757-(r f=1.41).wav 127

4.8 Spectral balance editing produces corresponding changes in

phoneme probabilities | I visualize all frames in which the absolute

difference between SPPGs inferred from ground truth audio and audio

with my proposed spectral balance editing exceeds 35%, using the

same audio as in Figure 4.7. Blue indicates where SPPGs inferred

from original audio are assigned at least 35% more probability than

SPPGs inferred from edited audio. Red indicates where SPPGs

inferred from audio with spectral balance editing are assigned at

least 35% more probability than SPPGs inferred from ground truth

audio. On the left (rf = 0.71), we see that “er” is replaced by

“ow” (1.4 seconds), “aa” is replaced with “ao” (1.7 seconds), “eh”

is replaced with “w” (2.8 seconds), and “t” is replaced with “d”

(3.4 seconds). These replacements all correspond with less energy

in the high-frequencies. On the right (rf = 1.41), we see that “dh”

is replaced with “th” (1.3 seconds), “z” is replaced with “s” (2.1

seconds), “l” is replaced with “ah” (2.7 seconds). These replacements

all correspond with more energy in high frequencies. Interestingly,

“s” (an unvoiced fricative) replaces “z” (the corresponding voiced
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fricative), but periodicity remains the same (Figure 4.7). This

can be explained by the fact that English pronunciations of, e.g.,

pluralizations, are commonly “z”, but are labeled as “s” in the

lexically-derived PPG training data (Section 2.1.3.1). 128

4.9 Voice conversion example | I (1) encode speech utterances from a

male (left) and a female (right) source speaker in my representation

(Chapter 2), (2) shift the pitch by the difference of the mean base-two

log-F0 in voiced regions between the source speaker and a target

speaker of the opposite gender, (3) perform speech synthesis using

the target speaker index and the source speaker representation

(with mean-corrected pitch) to synthesize the source speech content

using the speaker embedding associated with the target speaker, (4)

encode the synthesized speech in my representation, and (5) overlay

my representation inferred from synthesized speech on the input

representation to demonstrate accurate reconstruction during voice

conversion. Blue SPPGs (top) are inferred from a recording of the

source speaker, red SPPGs are inferred from speech synthesized

in the voice of the target speaker, and violet indicates accurate

reconstruction. For pitch, periodicity, and A-weighted loudness,

features inferred from synthesized speech are shown in black, while

input features are green when the inferred feature is within an error

threshold and red when outside that threshold. I use a threshold of

50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
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figure-4-9-0073-000053-0082-000741-*.wav2

figure-4-9-0108-000684-0032-000686-*.wav 132

4.10 Voice quality conversion example | I (1) encode speech utterances

from a male yawning (left) and a female sustaining an /ah/ sound

with and without vocal fry (right) in my representation (Chapter 2),

(2) perform speech synthesis using the speaker embedding associated

with a target speaker seen during training, (4) encode the synthesized

speech in my representation, and (5) overlay my representation

inferred from synthesized speech on the input representation. Blue

SPPGs (top) are inferred from a recording of the source speaker,

red SPPGs are inferred from speech synthesized in the voice of the

target speaker, and violet indicates accurate reconstruction. For

pitch, periodicity, and A-weighted loudness, features inferred from

synthesized speech are shown in black, while input features are green

when the inferred feature is within an error threshold and red when

outside that threshold. I use a threshold of 50 cents for pitch, 0.1 for

periodicity, and 6 dBA for volume.

figure-4-10-0032-000780-*.wav

figure-4-10-0013-000531-*.wav 134

4.11 Pronunciation interpolation and distance | Examples of using

my proposed speech representation (Chapter 2) for (left) voice

conversion, (center) pronunciation interpolation, and (right) manual

phoneme editing. (top) I visualize overlapping PPGs of a recording
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of the word “tomato” (blue) and inferred from the synthesized speech

(red). For readability, phoneme rows in the PPGs with maximum

probability < 10% are omitted. The accurate reconstruction of PPGs

(magenta) indicates preservation of (potentially edited) phonetic

content in the generated speech. In the center, the input (blue)

PPG is interpolated only within the (gray) edit region to be halfway

(i.e., 50%) between the /eh/ in the left PPG and the /aa/ in the

right PPG using SLERP [98]. Note that the reconstruction of

interpolating “ey” (left) and “aa” (right) is “ae” or “eh” (center).

This is consistent with interpolating vowels in formant space (F1, F2

- F1) [47] and indicates that one pronunciation can be represented

more than one way in a PPG. (bottom) Pronunciation distances

between synthesized speech and the original audio. My proposed

distance (Section 2.1.4) is more robust to resynthesis artifacts and

accurately captures pronunciation interpolation without a transcript.

figure-4-11-source.wav

figure-4-11-conversion.wav

figure-4-11-interpolation.wav

figure-4-11-manual.wav 135

4.12 Accent conversion example | I (1) encode an example speech

utterance in my proposed representation (Chapter 2), (2) perform my

proposed regex-based accent conversion to manually convert from the

original, South African accent to an American Midwestern accent,
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(3) perform speech synthesis to produce accent-edited speech, (4)

encode the accent-edited speech in my representation, and (6) overlay

the speech representation inferred from synthesized speech on the

input representation to demonstrate reconstruction of both prosody

and target pronunciation during accent conversion. My sequential

rule set for this example is as follows: (1) reallocate([“dh”, “ah”],

[“th”, “ah”]), (2) reallocate([“n”, “aa”, “t”], [“n”, “ah”, “t”]),

(3) reallocate(“er”, “r”), (4) reallocate(“ae”, “eh”), where

reallocate(b, c) reallocates all probability in regex matches for

phoneme sequence b to corresponding phonemes in phoneme sequence

c. Blue SPPGs (top) are inputs, red SPPGs are inferred from

accent-edited speech, and violet indicates accurate reconstruction.

For pitch, periodicity, and A-weighted loudness, the features inferred

from synthesized speech are shown in black, while input features are

green when the inferred feature is within an error threshold and red

when outside that threshold. I use a threshold of 50 cents for pitch,

0.1 for periodicity, and 6 dBA for volume.

figure-4-12-0082-000322-original.wav

figure-4-12-0082-000322-midwestern.wav 138

4.13 Automatic onomatopoeia example | I (1) encode an example

recording of cat vocalizations in my proposed representation

(Chapter 2), (2) perform speech synthesis using the speaker index

of a target speaker to produce a vocal imitation, (3) encode the
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synthesized vocal imitation in my representation, and (4) overlay

the speech representation inferred from synthesized speech on the

input representation to demonstrate reconstruction of my speech

representation during vocal imitation. Blue SPPGs (top) are inputs,

red SPPGs are inferred from synthesized speech, and violet indicates

accurate reconstruction. For pitch, periodicity, and A-weighted

loudness, the features inferred from synthesized speech are shown in

black, while input features are green when the inferred feature is

within an error threshold and red when outside that threshold. I use

a threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for

volume.

figure-4-13-source.wav

figure-4-13-0082-000322-target.wav

figure-4-13-0082-000322-imitation.wav 139
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CHAPTER 1

Introduction

Speech is an efficient and foundational medium of human communication, conveying

information via words (i.e., the lexical content), prosody (i.e., the pitch, duration and

loudness of speech), and pronunciation. Speech communication technologies—such as

the representation, transmission, playback, and editing of speech—are central to modern

communication mediums (e.g., film, podcasts, radio, television, social media, and video

games). While the lexical content of speech is amenable to representation, transmission,

and editing via written language, prosody and pronunciation are acoustic properties that

describe the spoken realization of the lexical content, and are influenced by factors such

as prominence [16, 77], emotion [21, 13], and social and cultural contexts (e.g., regional

dialects and accents). These factors are not well-suited for representation via lexical fea-

tures. This is because prosody and pronunciation are continuous, time-varying speech

attributes that vary at rates that can be entirely independent of lexical features. Further,

lexical features impose a coarse discretization on both speech pronunciations (as categor-

ical phones or phonemes) and phoneme durations (as an integer number of time frames).

Therefore, prosody and pronunciation require specialized representations to be accurately

and interpretably represented or modified.

Prosody and pronunciation are important elements of communication that encode sen-

timent [62] and meaning [16, 92]. As such, contextually-appropriate prosody is crucial
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both for human communication as well as text-to-speech systems that interact with hu-

man listeners. In some cases, contextually-inappropriate prosody and pronunciation can

be unsettling: voice assistants that sound unintelligible, incorrect, or even threatening.

Concretely, this could be the result of poor rendering of the prosody associated with punc-

tuation (e.g., the difference between “Let’s eat, grandma!” and “Let’s eat grandma!”) or

due to a word spoken in one accent sounding like another word in another accent (e.g.,

“rise up lights” in a midwestern American accent sounds like “razor blades” in an Aus-

tralian accent). In other cases, contextually-inappropriate prosody and pronunciation

restricts the utility of speech synthesis systems for content creation of podcasts, movies,

video games, and social media that require competitively high-fidelity speech (e.g., by

emphasizing an incorrect syllable or mispronouncing heteronyms such as “entrance” and

“entrance”).

Manually editing speech attributes in post-production (e.g., changing the prosody or

pronunciation) requires substantial effort by domain-expert audio engineers to achieve

high perceptual quality. Performing overdubs (i.e., corrections made via re-recording)

properly requires both significant audio engineering skills, vocal skills to perform natural

prosody matching and maintain a consistent distance to the microphone, and expensive

studio time or equipment. These workflow inefficiencies and prerequisite of a high level

of technical competencies are due to a lack of speech editing software that enables pre-

cise, fine-grained edits (e.g., fixing a mispronunciation) using interpretable controls that

directly correspond to the desired speech attribute. For example, it is far more intu-

itive to specify changing an “ey” sound to an “aa” sound (Section 4.7; Figure 4.11) than

manually performing frequency response corrections by aligning the automation curves of
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equalizers with the time of the “ey” sound, the frequencies corresponding to the formants

(Figure 1.1), and the per-formant gain changes in dB associated with the timbral differ-

ences between “ey” and “aa”. As well, it is simpler to specify changes in voice quality

that correlate with volume in dB (Section 4.3) than to attempt to mimic the correspond-

ing changes in frequency spectrum (Figure 4.5) dynamic range, and transients associated

with quieter or louder speech using a multi-band compressor. This inability for prior

speech editing systems to service the needs of speech content creators stems

from three primary challenges.

• Challenge 1 | The lack of a disentangled, interpretable representation of speech

that facilitates control over the desired speech attributes of interest. This causes

many disparate systems to be built, each demonstrating a small subset of the

desired editing capabilities and workflows—and often with low perceptual audio

quality.

• Challenge 2 | The lack of a speech generation system compatible with the afore-

mentioned interpretable representation, which can produce high-fidelity speech

that is accurate relative to what is specified in the representation.

• Challenge 3 | The lack of available editing capabilities. This causes content

creators to reach for less intuitive or less capable tools, or tools for which they have

had to develop substantial niche expertise (e.g., using compression, equalization,

additive noise, or concatenative synthesis to change one phoneme to sound like

another).

In this dissertation, I address these three challenges and develop the underlying tech-

nology that supports a new paradigm of speech editing tools that allow both novices



32

and experts access to efficient and intuitive methods for creating and editing high-quality

speech recordings. I first develop a disentangled, interpretable representation of speech

(Chapter 2; Figure 1.2). Then, I demonstrate that this representation can be paired

with existing speech generation systems to perform high-fidelity speech synthesis (Chap-

ter 3). Finally, I demonstrate that my interpretable speech synthesizer can be used for

high-fidelity speech editing—including both improving existing editing capabilities and

extending the available set of controls of speech editing systems (Chapter 4). Beyond

the development of novel speech editing tools well-suited for professional speech content

creation (e.g., for movies, video games, and podcasts), my contributions make possible

new research directions in explainable text-to-speech systems; audiovisual feedback for

language or accent learning; and real-time, fine-grained voice control for individuals with

speech or language disorders.

1.1. Background

In order to understand my contributions, some knowledge of speech production, au-

dio processing, machine learning, and speech editing is required. The remainder of this

chapter provides an overview of this prerequisite knowledge, followed by a description of

each of my research contributions within this dissertation.

1.1.1. Speech production

The human vocal mechanism consists of an air pressure system (the lungs), a vibratory

system (the larynx ), and a resonator system (the nasal and oral cavities). When the vocal

cords of the larynx are engaged, air passing through the larynx produces vibrations in the
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glottis (i.e., the space between the vocal cords) at a frequency controlled by the strength

of the contraction of the muscles of the larynx. The resonator system then performs a

spectral shaping of the signal based on the positions of articulators, which include the

tongue, lips, teeth, gums, glottis, and more. The loudness of the signal is determined by

the amount of air expelled by the lungs as well as the engagement of the vocal cords.

Speech sounds produced with engaged vocal cords are voiced sounds, meaning that the

speech signal contains repetition at a fundamental frequency (F0)—as well as energy at

harmonics H1, H2, . . . (Figure 1.1; bottom). This is opposed to unvoiced speech, in

which the speech does not contain any significant amount of repetition within the human

auditory range of 20 Hz - 20 kHz. The formants F1, F2, F3, . . . are spectral peaks of

the time-varying filter produced by the resonant system that shape the relative energy

of harmonics. Note that in practice—and excluding outliers—male speakers typically

produce F0 within the range 50-200 Hz, and female speakers produce F0 within 100-550

Hz [123].

My proposed speech representation (Chapter 2; Figure 1.2) can loosely be viewed as

a computational parameterization of speech production. Specifically, I use an automatic

pitch estimator to model both F0 (Section 2.2) and voicing or vocal cord engagement

(Section 2.3), perceptually-weighted loudness to model air pressure (Section 2.4), and a

phonetic posteriorgram (PPG) (Section 2.1) to disambiguate phonemes, such as is done

by the spectral filtering produced by the placement of the articulators in the resonator.

While some prior work has attempted to produce a more precise computational model

of speech production using, e.g., distances between articulatory features [118], these works

are limited both by the lack of availability of high-quality annotations of articulatory
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positions, as well as the ability to be used as an intuitive control interface by downstream

users. For example, a novice can specify they want a “p” sound and not a “d” sound, but is

unlikely to quickly infer that the distinction between “p” and “d” corresponds to alveolar

(tongue against roof of mouth) as opposed to bilabial (closed lips) articulator positions.

Niche demographics of experienced users (e.g., clinical speech pathologists) are capable

of making such distinctions in articulatory positions, and future work may demonstrate

the utility of such articulatory models for at least these specific users—especially if larger

datasets of articulatory positions or other methods to acquire more data become available.

1.1.2. Audio processing

Computers represent speech waveforms as a sequence of quantized values sampled at a

constant interval in time (Figure 1.1; top). The audio sampling rate is application depen-

dent: common audio sampling rates include 44.1 kHz (for high-fidelity speech applications

such as podcasts and film) and 8 kHz (for high-bandwidth speech applications such as

telephone communications). While audio utilizes a high sampling rate, its repetitive and

relatively low-dimensional structure make audio signals well-suited for domain-specific fea-

ture representations that summarize key elements of the audio signal while compressing

the temporal dimension for faster transmission and processing.

The most widely-used audio representation that exemplifies this temporal compression

is the magnitude spectrogram (Figure 1.1; middle). Let x = x1, . . . , xT be a sequence of T

frames of speech, where one frame of speech consists of window size W speech samples and

is offset from the previous frame by hop size H samples. The spectrogram S ∈ R|Ω|×T is
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the time-varying energy of x at a set of fast-Fourier transform (FFT) frequencies ω ∈ Ω.1

(1.1) Sω,t =
∣∣FFT(xt, ω)

∣∣

The magnitude spectrogram allocates its representational capacity linearly along the

frequency axis. However, humans perceive frequency logarithmically, with each doubling

in frequency producing a perceptually equal frequency shift that corresponds to a mu-

sical octave. As well, humans do not perceive equal energy at different frequencies as

equally loud. The logarithmic nature of human speech perception is addressed by change-

of-basis techniques such as the Mel spectrogram (Figure 1.1; bottom), which filters each

spectrogram frame using a set of triangular filters, where the center frequencies of the

filters are determined using human perceptual data. Similarly, A-weighted loudness [65]

(Section 2.4) addresses the uneven perception of loudness at various frequencies by weight-

ing each frequency channel of the magnitude spectrogram using weights determined via

psychoacoustic experiments of human perception of loudness.

While time-frequency representations such as the Mel spectrograms are commonly

used in loss functions [40], as output representations [96], and input representations [60,

81], they are not well-suited to be directly modified by users for the purposes of speech

editing, as the speech attributes of interest (e.g., the prosody and pronunciation) are en-

tangled, meaning that one cannot independently edit the attributes of interest. Further,

1N.B., a list of symbols is available in Appendix A.
2This speaker icon followed by an audio file name references a corresponding audio recording in the
accompanying directory of supplementary audio.

https://drive.google.com/drive/folders/1sTN1shJGdAKDF4rGQysd9QuYdc9DMMyM?usp=drive_link
https://drive.google.com/drive/folders/1sTN1shJGdAKDF4rGQysd9QuYdc9DMMyM?usp=drive_link
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Figure 1.1. (top) Audio waveform of the speech utterance “I am sitting
in a room, different from the one you are in now.” (middle) The corre-
sponding magnitude spectrogram depicting the distribution of energy across
the frequency spectrum. (bottom) The corresponding Mel spectrogram,
which reallocates more representational capacity to better capture the rel-
evant frequency range for speech processing. The black line overlaying the
lowest yellow band indicates the fundamental frequency (F0), while the
parallel, higher-frequency bands indicate harmonics H1 (green), H2 (red),
H3 (blue), and H4 (yellow). Harmonic estimation is performed using my
proposed neural pitch estimator (Section 2.2) and Viterbi-based estimation
method (Section 4.4).
figure-1-1-sitting.wav2

the process of editing a time-frequency representation by specifying individual energy lev-

els of each spectrogram bin is not an intuitive or efficient editing process for novices or
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experts. My proposed representation (Chapter 2) addresses these difficulties and demon-

strates speech reconstruction quality on-par with the commonly used Mel spectrogram,

while also enabling a range of state-of-the-art speech editing controls that are difficult or

impossible with Mel spectrograms.

1.1.3. Machine learning

Once the speech to be edited is encoded in a suitable representation—such as a Mel spec-

trogram or my proposed representation (Chapter 2)—and the desired edits have been

performed, the final step is to render the edited representation into a new speech record-

ing that contains the original speech, but with the desired edits (Chapter 4). In audio

terminology, this process of converting from acoustic audio features to a speech waveform

is called vocoding, and has traditionally been performed using digital signal processing

(DSP) techniques that leverage closed-form mathematical models and domain-specific as-

sumptions about audio and speech [69, 80]. DSP-based methods are often fast, but their

vocoding performance has been far surpassed by machine learning models that learn to

model the conditional distribution of the speech waveform given input acoustic features

using a large dataset of speech recordings [40, 52]. This general practice of training a

model on a dataset to learn a distribution (i.e., machine learning) is utilized throughout

my dissertation to produce state-of-the-art pitch estimation (Section 2.2) and pronun-

ciation representation (Section 2.1), as well as to generate speech waveforms from Mel

spectrograms, my proposed representation (Chapter 2), and other audio representations

used as baselines for comparison (Chapter 3). The particular type of machine learning

utilized throughout my work is deep neural networks (DNNs) [51], which perform gradient
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descent in small batches to optimize the parameters of a customizable, non-linear func-

tion according to a customizable loss function. DNNs have demonstrated the capability

to learn to model high-dimensional, non-linear conditional distributions from sufficiently

large datasets. While the field of research on neural networks has grown large, the rele-

vant DNN concepts employed in my dissertation research are relatively standard and few:

convolutional neural networks [50], Transformer neural networks [108], and generative

adversarial networks (GANs) [26]. Given the current ubiquity of these techniques and

availability of high-quality educational materials (e.g., the Annotated Transformer [93]),

I do not further describe these general techniques in this dissertation. Architectures, loss

functions, and any non-standard techniques of DNNs used in this work are described in

their corresponding sections.

1.1.4. Speech editing

Accurate computational representation and editing of speech advances the creative work-

flows of multiple multi-billion-dollar speech content creation industries as well as diagnos-

tic practices for clinical speech pathologists servicing patients with speech and language

disorders [68]. For example, the global market value of the film & video game indus-

try in 2023 was $285.62 billion USD in 2023, while the global market for social media

was $219.06 billion in 2023 and for podcasts was $27.73 billion [17]. All of these con-

tent creation applications necessitate fast, high-quality representation or editing of speech

recordings.

A key challenge with developing systems for representing and editing speech is de-

termining what representations and edits are both feasible to develop and useful for the
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target users. Given the variety of creative and professional tasks that speech technology

is used for, users may desire different levels of control and different editing capabilities.

For example, animators utilize automated translation services (e.g., Papercup) to produce

“dubbed” versions of films suitable for distribution in different companies, audio engineers

use automatic pitch correction (e.g., Melodyne) to quantize F0 to musical notes, and voice

actors and sound effect artists use a wide variety of tools and techniques to sculpt custom

character voices for films and video games. As such, improving the creative workflow can

mean improving the quality of existing state-of-the-art editing capabilities, or proposing

new and demonstrably useful editing capabilities. Thus, my contributions both improve

the state-of-the-art of existing editing capabilities of known utility (e.g., pitch-shifting)

and propose new speech editing controls (e.g., fine-grained pronunciation control). These

contributions are made possible by my proposed disentangled speech representation for

fine-grained speech editing (Chapter 2), which allows the capabilities I develop to be eas-

ily integrated into any existing neural speech editing systems by replacing the existing

speech representation with my proposed representation.

My speech representation and editing system (Figure 1.2) enable a unified approach

to fast and high-fidelity editing of pitch, duration, volume, timbral correlates of volume,

spectral balance, pronunciation, and speaker identity. Of these, timbral correlates of

volume, spectral balance, and pronunciation control represent novel editing capacities de-

veloped in my research (Chapter 4). Physiologically, controlling the timbral correlates of

volume corresponds to muscular contractions in the larynx and diaphragm and variations

in air pressure produced by the lungs. This voice quality control is useful for increasing

or decreasing the perceived intensity of the spoken content independent of volume. My
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proposed disentangled spectral balance editing method changes the relative amount of

energy at high or low frequencies. This produces a similar effect as, e.g., Alvin from

Alvin and the Chipmunks, but without requiring voice actors to sing/speak unnaturally

slowly. Lastly, fine-grained pronunciation control enables downstream applications such

interpretable accent conversion, automatic onomatopoeia (i.e., producing speech record-

ings of speakers mimicking a designated non-speech sound), and fixing nuanced mistakes

in pronunciation and accent during post-processing without having to rerecord.

While many neural speech editing systems have emerged over the past decade [14, 49,

115, 120], none of them adequately address the root cause of failure of speech editing sys-

tems: an inadequate speech representation. Entangled, non-informative, or non-intuitive

speech representations prohibit accurate expression or synthesis of the user’s intent. My

dissertation uncovers and addresses key issues in disentangled and interpretable speech

representation, and demonstrates the efficacies of resolving those issues by setting the

state-of-the-art on a number of speech editing (and speech representation) tasks. Specif-

ically, I find accurate representation of F0 (Section 2.2) and pronunciation (Section 2.1)

to be key issues inhibiting editing capacities of prior works. I also address minor rep-

resentational issues such as an improved representation of vocal cord engagement (i.e.,

the voiced/unvoiced decision) (Section 2.3) and a multi-band A-weighted loudness (Sec-

tion 2.4) to trade-off reconstruction fidelity and disentanglement.

1.2. Contributions

My contributions in this dissertation can be organized as either improving the repre-

sentation of speech, improving the speech synthesis system that produces speech from the
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Figure 1.2. My proposed speech representation (Chapter 2) and
speech editing system (Chapter 3) | Input audio (Arnold Schwarzeneg-
ger saying “I’ll be back” from the movie The Terminator) is first encoded
in my proposed disentangled and interpretable representation (Chapter 2)
consisting of a sparse phonetic posteriorgram (SPPG) (Section 2.1), Viterbi-
decoded neural pitch estimation (Section 2.2), entropy-based periodicity
(Section 2.3), and multi-band A-weighted loudness. In the visualization of
SPPGs (top; blue), Unused phonemes with maximal probability less than
10% are omitted for clarity. For interpretability and more intuitive control,
I visualize the single-band A-weighted loudness instead of my proposed
multi-band A-weighted loudness (Section 2.4; Figure 2.8). Speech content
creators and producers edit the interpretable representation as well as the
speaker identity (Section 3.2.2) and augmentation ratios (Section 3.2.1)
to perform a variety of high-fidelity speech editing operations (Chapter 4)
such as fine-grained (i.e., frame resolution) pitch-shifting, time-stretching,
and loudness editing, as well as global (i.e., applied to the entire speech
recording) editing of speaker identity and spectral balance.
figure-1-2-schwarzenegger.wav

proposed representation (including any potential edits), or proposing novel speech editing

capabilities. My contributions are as follows.
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• Contributions to speech representation (Chapter 2)

- I develop an efficient neural pitch estimator with state-of-the-art pitch and

periodicity accuracy on speech and music data (Sections 2.2-2.3).

- I enable disentangled representation of pronunciation by advancing the state-

of-the-art of a pronunciation representation called a phonetic posteriorgram (PPG)

(Section 2.1).

• Contributions to interpretable speech synthesis (Chapter 3)

- To improve the quality and efficiency of speech editing, I develop a fast, high-

quality neural speech synthesizer that produces speech waveforms from my pro-

posed speech representation. My interpretable speech synthesis system perform

speech reconstruction with comparable perceptual accuracy to Mel spectrograms—

a standard high-anchor for speech synthesis tasks.

• Contributions to high-fidelity speech editing (Chapter 4)

- I demonstrate that my proposed interpretable speech synthesizer enables ac-

curate, high-fidelity control over pitch, duration, volume, timbral correlates of

volume, pronunciation, spectral balance, voice conversion, and speaker adapta-

tion. Three of these controls (spectral balance, timbral correlates of volume, and

pronunciation) represent novel speech editing capabilities not afforded by prior

works.

Together, my contributions set the foundations for speech editing software that expe-

dited and advances the workflows of speech content creators responsible for the develop-

ment of many of the primary means of communication (e.g., film, podcasts, and social
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media) used today. In Chapter 5, I describe future directions for research and develop-

ment of speech technology made possible by my proposed contributions, such as real-time

accent and pronunciation feedback for language learning and patients with speech and

language disorders, querying audio databases via vocal imitation, and low-bandwidth

interpretable speech coding.
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CHAPTER 2

A disentangled, interpretable representation of speech

Different speech analysis and content creation tasks necessitate different representa-

tions of speech. For example, clinical speech pathologists utilize the international phonetic

alphabet (IPA) phone set (as opposed to, e.g., the CMU pronunciation dictionary used in

this thesis) due to having some physiological correspondence with the human speech mech-

anism1, text-to-speech systems use representations that best serve as a bridge between

the lexical and audio distributions (as measured by perceptual speech naturalness and

fidelity) [33, 49, 111], and singers transcribe and read singing from lexically-annotated

musical notation that coarsely represents F0 and loudness information. What is the

representation of speech most appropriate for editing tasks commonly used in

speech content creation? Such a representation should possess four properties.

(1) Property 1 | The ability to be computed from a speech recording without a tran-

script, which minimizes the need for manual or automatic lexical annotation—or

even adherence to one or more languages as opposed to the more general set of

speech sounds.

1A phone is an atomic unit of speech sound, whereas a phoneme is a set of phones. Phones of the
same phoneme set are called allophones. The one-to-many mapping of phonemes to phones is known as
allophonic variation.
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(2) Property 2 | Interpretable control parameters that accurately represent the un-

derlying speech attributes to be edited (e.g., prosody and pronunciation).

(3) Property 3 | The ability to be used as an input for high-quality speech synthe-

sis. Combined, properties 1 and 3 indicate that an appropriate representation

for speech editing should be invertible.

(4) Property 4 | Disentanglement, wherein representations of various parameters

can be independently edited without impacting each other (e.g., changing the

pitch without changing pronunciation). Speech editing of multiple parameters

requires each parameter to be disentangled relative to all other parameters.

My experiments presented in this thesis indicate that my representation (Fig-

ure 1.2) satisfies all four of these criteria for a representation for fine-grained

speech editing and consists of four disentangled2, interpretable, time-aligned

features: sparse phonetic posteriorgrams (SPPGs) (Section 2.1), Viterbi-decoded

neural pitch estimation (Section 2.2), entropy-based periodicity (Section 2.3),

and multi-band A-weighted loudness (Section 2.4). In this chapter, I describe

each of those speech representations and my contributions to their development. I also

2Attentive readers may note two remaining sources of entanglement: (1) entanglement of periodicity
information between the periodicity and SPPGs (e.g., the voiced/unvoiced confidence can also be derived
as the total probability assigned to voiced phonemes) and (2) entanglement between the multi-band loud-
ness and the silence token in the SPPGs. Entanglement (1) can be solved by automatically or manually
editing the periodicity when the total voiced/unvoiced confidence of the SPPG changes. Entanglement
(2) does not impact any common type of speech edit, but can similarly be solved by automatically or
manually editing the SPPG silence probability with edits to the A-weighted loudness.
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describe existing speech representations that precede the development of my represen-

tation and compare them to my proposed speech representation, demonstrating that all

prior representations fail to capture at least one of these properties (Section 2.5). In the

following two chapters, I demonstrate that neural speech synthesis using my proposed

representation produces accurate and high-fidelity speech reconstruction (Chapter 3) and

speech editing (Chapter 4).

2.1. Sparse phonetic posteriorgrams (SPPGs)

To the best of my knowledge, my proposed sparse phonetic posteriorgram (SPPG) is

the first representation of speech pronunciation that has the combined properties of being

interpretable, suitable for fine-grained pronunciation control (Section 4.7), and amenable

to high-fidelity speech synthesis (Chapter 3). A phonetic posteriorgram (PPG) [28] (Fig-

ure 1.2; top) is a non-stationary (i.e., time-varying) categorical distribution over acoustic

units of speech (e.g., phones or phonemes). Representations similar to PPGs have been

useful in speech generation due to their ability to disentangle pronunciation features from

speaker identity, allowing accurate reconstruction of pronunciation (e.g., voice conver-

sion) and coarse-grained pronunciation editing (e.g., foreign accent conversion). As such,

all five top entries to the 2020 Voice Conversion Challenge [125] utilize representations

similar to my proposed interpretable PPGs, but without the affordances of interpretabil-

ity or control. This lack of interpretability and control is due to the construction of

these representations as intermediary activations of automatic speech recognition (ASR)

systems [59] or distributions over learned latent variables [124, 126] as opposed to a



47

distribution over interpretable phoneme categories. Beyond voice conversion, text-to-

speech (TTS) systems that predict PPG representations from text as an intermediate

step show improved pronunciation over comparable systems that predict speech directly

from text [103] and have enabled accent conversion [124]. However, this accent con-

version utilizes non-interpretable representations, such that any errors in the synthesized

accent cannot be fixed without changing the entire speech recording. No prior work has

demonstrated a system capable of fine-grained pronunciation editing suitable for fixing lo-

calized pronunciation errors such as those that occur due to mispronunciations or incorrect

dialects or accents (by humans or TTS systems).

Text-to-speech (TTS) systems utilizing neural networks [60, 49]) typically use as an

input representation the sequence of phonemes indices, extracted from the transcript via

a grapheme-to-phoneme process. This representation’s precision for accurately recon-

structing pronunciation is limited by the granularity of the phoneme set, which coarsely

discretized the continuous space of speech pronunciation induced by time-varying artic-

ulatory positions (Section 1.1.1). As well, this phoneme representation does not specify

phoneme durations: phoneme durations are generated from lexical features, such as the

phones or phonemes generated from text by a grapheme-to-phoneme (G2P) system. TTS

systems that explicitly model the conditional distribution of phoneme durations given lex-

ical features [91] offer a partial solution: phoneme durations can be inferred from ground

truth speech and corresponding transcripts (e.g., via forced phoneme alignment [127]).

However, this necessitates a highly accurate external forced phoneme aligner and quan-

tizes phoneme durations to the frame resolution. In contrast, PPGs provide a more fine-

grained representation of pronunciation, such as allowing for precise interpolation between
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discretized lexical features (Figure 4.11). PPGs also preserve the precise alignment and

permit training of speech synthesizers without access to the speech transcript—requiring

a transcript only for the initial training of the generalizable PPG model.

Prior works have noted that pronunciation is preserved during voice and accent con-

version when using representations like intermediate activations of ASR systems [59] or

distributions over learned latent variables [124]—and have even used the term PPG to re-

fer to some of these representations. While all of these are multi-dimensional, continuous-

valued representations amenable to high-quality speech synthesis, none of these represen-

tations permit the interpretability, disentanglement, and control afforded by true PPGs

built upon interpretable phonetic categories.

In this section, I improve the accuracy of state-of-the-art interpretable PPG repre-

sentations on unseen datasets (Section 2.1.3) and demonstrate that interpretable PPGs

exhibit comparable pitch modification accuracy to non-interpretable baseline speech rep-

resentations [15]. I propose sparse PPGs (SPPGs) to prevent synthesis artifacts due to

noise in low-probability PPG bins (Section 2.1.2). I further perform novel analyses of

high-fidelity, interpretable PPG representations to show insights such as an interpretable

acoustic pronunciation distance at the frame resolution (Section 2.1.4) as well as the first

examples of interpretable, fine-grained pronunciation control, such as making a precise

edit to a specified “ey” sound to sound more like an “aa” or interpolating between two

phonemes (Section 4.7; Figure 4.11).
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Figure 2.1. Neural phonetic posteriorgrams (PPGs) | My proposed
method for producing PPGs using a neural network. I extract an audio
representation (e.g., a Mel spectrogram; middle) from speech (bottom) and
train a neural network to infer a time-varying categorical distribution over
phoneme categories (i.e., a PPG; top).
figure-1-2-schwarzenegger.wav

2.1.1. Inferring PPGs using neural networks

Let x1, . . . , xT be a sequence of T adjacent frames of audio, where each frame consists

of window size W samples and is offset from the previous frame by hop size H samples.

I first encode x1, . . . , xT in an audio representation more suitable for a neural network
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(e.g., a Mel spectrogram) and then train the neural network to infer PPG G ∈ R|P |×T , a

time-varying categorical distribution over phoneme set P (i.e., Gp,t is inferred probability

that the speech in frame t is phoneme p).

My neural network architecture consists of an input convolution layer, five Transformer

encoder layers (self-attention and a feed-forward network) [108], and an output convolu-

tion layer that produces a categorical distribution via softmax activation over the |P | = 40

phonemes (including silence) from the CMU Pronunciation Dictionary phoneme set.3 I

use a kernel size of five for the input and output convolution layers. My Transformer

layers use two attention heads and 512 channels. For each representation, I selected the

number of layers and channels via hyperparameter search on a heldout validation par-

tition from Common Voice [3] (Section 2.1.3.1). I fixed the number of channels at 128;

trained using 3, 4, 5, and 6 layers; and then fixed the number of layers at best of these

values and trained models with 128, 256, 512, and 1024 channels, selecting the best of

these. In the event of divergence from overparameterization (i.e., gradient confusion [95]),

I allowed one reload from checkpoint. I find 5 layers and either 256 (for EnCodec and

Mel spectrograms) or 512 (for all others) channels to be optimal.

I use an Adam optimizer [36] with a learning rate of 2e−4 to optimize categorical

cross entropy loss between predicted and ground truth phoneme categories at each ten

millisecond frame. I train my PPG models for 200,000 steps using a variable batch size [25]

of up to 150,000 frames per batch.

3speech.cs.cmu.edu/cgi-bin/cmudict

http://www.speech.cs.cmu.edu/cgi-bin/cmudict
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2.1.2. Inducing sparsity in PPGs

Noisy or uninformative regions in a speech editing representation (e.g., low-probability

phoneme bins in the PPG) have relatively high conditional entropy with the speech wave-

form. I hypothesize that this high-entropy noise can be memorized by a neural speech

synthesizer, inducing overfitting that harms generalization during reconstruction and edit-

ing. I address this by proposing sparse phonetic posteriorgrams (SPPGs). I explore three

methods for producing SPPGs: (1) (Top-k) set all but the k most-probable phonemes

at each frame to zero; (2) (Threshold-k) set all phonemes with probability less than k

to zero; and (3) (Percentile-k) sort the phonemes of each frame by descending proba-

bility, add phoneme probabilities until the sum reaches k, and set all remaining phoneme

probabilities to zero. I renormalize SPPG frames to sum to one. I find Percentile-k with

k = 0.85 to be the best SPPG hyperparameter configuration (Section 2.1.3). An example

of the difference between a PPG and corresponding SPPG is visualized in Figure 2.2.

2.1.3. Objective evaluation of PPGs

My evaluation in this section determines what audio input representation(s) (Section

2.1.3.2) is best for producing accurate PPGs—where accuracy is measured by the frame-

wise phoneme accuracy relative to ground truth phoneme transcriptions—and evaluates

the efficacy of my high-fidelity neural PPGs to produce an accurate, frame-resolution

pronunciation distance.

In my original publication describing my proposed PPGs [15], I further demonstrate

that a common speech synthesis system (VITS [34]) performs pitch-shifting using only my
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Figure 2.2. Sparse phonetic posteriorgrams (SPPGs) (left) An over-
lay of a PPG and its corresponding SPPG (using Percentile-k sparsification
with k = 0.85). Blue indicates PPGs, red indicates SPPGs, and violet
indicates agreement between PPGs and SPPGs. (right) Red indicates dis-
agreement between SPPGs and PPGs. For both plots, only phonemes with
a maximal probability above 0.1% are depicted.
figure-2-2-0070-000751.wav

proposed PPGs and neural pitch estimation with pitch and pronunciation accuracy ap-

proaching top non-interpretable speech representations such as wav2vec 2.0 [7] and Mels.

I also corroborate the framewise phoneme accuracy results presented here with a subjec-

tive preference test of speech reconstruction, which verifies that improvements in frame-

wise phoneme accuracy reduce audible mispronunciations or artifacts [15]. My follow-up

work on performing speech reconstruction from my proposed representation [71] further

improves pitch-shifting accuracy and enables speech reconstruction with comparable per-

ceptual similarity as Mel spectrogram vocoding (Section 3.4)—a standard high-anchor
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for quality and naturalness for text-to-speech systems—while enabling many high-fidelity

speech editing capabilities not afforded by Mel spectrograms (Chapter 4).

PPGs allow a more nuanced representation of pronunciation than discrete phonemes.

This is due to the PPG model expressing continuous-valued uncertainty over the most

likely phonemes. This uncertainty can arise from errors in ground truth grapheme-to-

phoneme (G2P) or Nonetheless, any network that outputs PPGs from audio input should

broadly agree with high-quality, aligned phonetic transcriptions of the input audio. There-

fore, I perform objective evaluation to determine the extent to which my PPG represen-

tations computed from each of the input representations described in Section 2.1.3.2 are

accurate representations of the ground truth phoneme categories. I evaluate the frame-

wise phoneme accuracy, or the proportion of frames where the ground-truth phoneme is

assigned highest probability by the model. I perform evaluation on the test partitions of

Common Voice and TIMIT, as well as all of Arctic.

Note that 100% framewise phoneme accuracy does not correspond to an ideal PPG.

For 100% accuracy to be ideal, the phoneme transcriptions and alignments used for train-

ing and evaluation would have to be free of any noise. However, phoneme transcriptions

used as training data are derived from an American English grapheme-to-phoneme (G2P)

system. This means the phoneme transcriptions are derived solely from the transcript,

without access to the speech recording or information about the speaker. Therefore, pro-

nunciation variations due to speech rate, allophonic variation, prosodic context, or vari-

ations due to accent are not indicated in the forced phoneme alignment used as ground

truth. This indicates that there is an unknown, dataset-specific ideal framewise phoneme

accuracy that depends on the amount of noise in the data. In practice, I assume that
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Utterances Speakers Hours
Arctic [39] 7816 6 7.05

Common Voice [3] 864418 29493 1375.29
TIMIT [22] 6300 630 5.38
VCTK [119] 264468 109 82.37

Table 2.1. Statistics of each of the datasets used to train or evaluate PPGs.

higher accuracy is better, but utilize objective and subjective evaluation of downstream

tasks (e.g., speech synthesis and editing) for verification. As well, my proposed, in-

terpretable PPGs offer a potential interface for annotators aiming to perform manual

verification of phoneme transcriptions and alignments (e.g., by using an inferred PPG as

a starting point and making manual corrections as needed). I hypothesize that if this

manual annotation was performed well such that a verifiably noise-free dataset existed,

it could be used to determine the value of the “ideal” accuracy of a PPG on a different

dataset.

The efficacy of sparsifying PPGs cannot be properly evaluated via framewise phoneme

accuracy, because none of the proposed sparsification methods changes which phoneme

is assigned highest probability. My proposed SPPG methods can instead be evaluated

by training a speech synthesis system on each candidate PPG or SPPG representation

and comparing these systems using my evaluation methodologies and objective metrics for

speech reconstruction and editing (Section 3.3.1). Using these objective metrics for speech

reconstruction and editing, my hyperparameter search over k for each method indicated

Percentile-k with k = 0.85 produces the most accurate speech reconstruction and editing.

I ablate speech editing between PPGs and Percentile-0.85 SPPGs in Section 4.8. Fine-

grained control of pronunciation using SPPGs is demonstrated in Section 4.7.
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2.1.3.1. Data for training and evaluating PPGs. I train my neural PPG model on

a subset of the Common Voice dataset [3]. I perform objective evaluation of phoneme

accuracy using a held-out partitions of Common Voice and TIMIT [22], as well as the full

CMU Arctic [39] dataset. All datasets are English speech with a diverse range of speakers

and accents. TIMIT and ARCTIC contain manually-aligned transcripts. For Common

Voice, I use the alignments produced by the Charsiu forced-aligner [127]. The transcripts

for Arctic and TIMIT are phonetically balanced (i.e., phonemes show up equally often in

the transcript, but not necessarily for an equal number of frames of audio) and manually

time-aligned. I partition Common Voice into train/valid/test partitions of proportions

80%/10%/10%. I report the number of utterances, speakers, and total hours of speech

recordings of each dataset that I use to train or evaluate PPGs in Table 2.1.

2.1.3.2. Audio input representations. All representations are computed at a hopsize

of ten milliseconds (ms) and a sample rate of 16,000 Hz, unless otherwise stated.

Mel spectrogram (Section 1.1.2; Figure 1.1) [80 channels] | Spectrograms are a com-

mon representation for speech research tasks. I use log-energy magnitude spectrograms

computed from the raw audio with a window size of 1024 and bin the frequency channels

into 80 Mel-spaced bands.

Wav2vec 2.0 [7] [768 channels] | Wav2vec 2.0 is a neural speech encoder with competitive

ASR Phoneme Error Rate (PER) when fine-tuned on TIMIT. PER is similar to my

objective metric of framewise phoneme accuracy (Section 2.1.3); however, PER does not

require the alignment between the phonemes and the audio to be preserved. Wav2vec 2.0

uses a 20 ms hopsize. I apply nearest neighbors interpolation to double the number of

timesteps to a 10 ms hopsize.
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Charsiu [127] [768 channels] | Charsiu appends a convolutional layer to a pretrained

wav2vec 2.0 base model that upsamples from the 20 ms hopsize to a 10 ms hopsize. The

wav2vec 2.0 feature encoder is frozen and the rest of the model is fine-tuned to maximize

a categorical cross entropy loss over ground truth derived via grapheme-to-phoneme and

forced alignment [64]. I use the W2V2-FC-10ms model, which is among the state-of-the-art

in forced phoneme alignment [127].

ASR bottleneck [59] [144 channels] | This is a pretrained ASR model with an encoder-

decoder architecture. I use the bottleneck features output by the pretrained encoder,

which is also used in voice conversion and TTS for its pronunciation-preserving quali-

ties [43, 103].

EnCodec [18] [128 channels] | EnCodec converts audio into codebook indices of 32

codebooks—each containing 1024 codes and 128 channels—and then performs an element-

wise sum over codebooks. EnCodec achieves competitive results on low-dimensional, in-

vertible speech representation learning [18] and text-to-speech [111].

2.1.3.3. Objective evaluation results. Figure 2.3 provides results for my objective

evaluation of PPGs. Wav2vec 2.0 achieves the highest overall accuracy across datasets,

followed by Mel spectrograms. In Churchwell et al., [15] I perform a subjective eval-

uation of reconstruction using a Multiple Stimuli with Hidden Reference and Anchor

(MUSHRA) [30] style subjective evaluation. Each participant performs 10 MUSHRA

trials. In each trial, one utterance in a test partition of the VCTK dataset [119] is re-

constructed using only the PPGs (without sparsification) and a pitch contour. I compare

PPGs computed from each of the five input representations. The reconstructions are
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Figure 2.3. Average framewise phoneme accuracy | Accuracy of PPGs
computed from five input representations. The wav2vec 2.0 [7] input repre-
sentation has the best PPG accuracy when averaged over all datasets (see
legend). N.B. The base wav2vec 2.0 model of Charsiu [127] was trained
on some of my Common Voice test partition as well as the TIMIT train-
ing partition, making Charsiu’s results on those datasets unreliable upper
bounds.

rated in comparison to each other on a 0-100 quality scale using a set of sliders. Two ref-

erences are also included in the comparison set: (1) the high-quality original speech audio

(the high anchor) and (2) a low-quality, 4-bit quantization of the original audio (the low

anchor). I recruited 50 participants. I filtered out 26 annotators that either failed the lis-

tening test or rated the low anchor (4-bit quantized audio) as higher quality than the high

anchor (original audio). Results indicate that the perceptual quality of speech reconstruc-

tion with (non-sparsified) PPGs inferred from Mel spectrograms marginally outperforms

wav2vec 2.0. Given the size, interpretability, generality, and relative simplicity of com-

puting a Mel spectrogram, I use PPGs (and SPPGs) inferred from Mel spectrograms for

the remainder of this dissertation.
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2.1.4. PPGs encode acoustic pronunciation distance

Pronunciation distances are useful for automatic evaluation of language acquisition, lan-

guage or accent learning, and speech pathology. They are also a useful evaluation metric

for speech enhancement and speech synthesis systems. I propose an interpretable distance

measure of framewise pronunciation error. Let G ∈ R|P |×T be a phonetic posteriorgram

on phoneme set P and time frames T , such that Gp,t is the inferred probability that the

speech in frame t is phoneme p. By default, my PPG training is not class-balanced, and

some phonemes are significantly more likely to occur in the dataset (e.g., “aa” occurs far

more often than “zh”). To prevent this from imposing bias on my proposed distance,

I train a class-balanced PPG model using class weights λi = minj Cj/Ci to weight the

relative contribution of each phoneme to the training loss, where Cx is the number of

frames where phoneme x is ground truth. I extract from this class-balanced model an

interpretable representation of similarity between phonemes S ∈ R|P |×|P | (Figure 2.4)

that captures the extent to which—for all pairs of phonemes (b, c) ∈ P × P—the model

assigns probability to phoneme c when it predicts b as the most likely phoneme. My

proposed acoustic pronunciation distance ∆PPG can be stated as follows, where JS is the

Jensen-Shannon divergence.

(2.1) ∆PPG(Gt, Ĝt) = JS(SγGt,SγĜt)

Hyperparameter γ controls the extent to which phoneme similarity matrix S influences

pronunciation distance. Intuitively, a pronunciation distance should be lower when all

words are pronounced similar to the reference pronunciation and higher when this is not
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the case. This is also true of word error rate (WER), a commonly used speech intelli-

gibility evaluation metric that measures the difference in automatic speech recognition

(ASR) output between synthesized audio and a ground truth transcript. WER performs

a dynamic programming alignment between the words of target and hypothesis sentences

to compute the minimum number of word insertions ni, deletions nd, and substitutions

ns required to transform the hypothesis sentence into the target. Given a ground truth

transcript containing n words and transcript derived from corresponding predicted audio,

WER is as follows.

(2.2) WER =
ni + nd + ns

n

I tune γ on my validation partition to maximize the Pearson correlation with word error

rate (WER) using Whisper-V3 [90] using 2,000 audio files of test data from my original

pitch disentanglement experiments [15] that have been pitch-shifted by ±200 cents. Using

optimal hyperparameter γ = 1.20, ∆PPG demonstrates strong Pearson correlation with

WER (r = 0.697; n = 2000; p = 1.76× 10−291). In Section 3.3.1, I discuss some potential

issues with data leakage using WER with Whisper-V3 that can be resolved by using my

proposed ∆PPG.

Pronunciation distances can be utilized to develop automated software for the evalu-

ation of language acquisition (in infancy), language learning, voice acting (e.g., learning

accents) and clinical speech pathology. In such applications, a reference recording is

played containing the specific phonemes or speech accent of interest. A user listens to the

recording and then attempts to mimic the pronunciation. The software then scores the

user’s pronunciation relative to the reference using, e.g., ∆PPG. Framewise pronunciation
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Figure 2.4. Acoustic phoneme similarities | (top) Row b column c
is lnSb,c = lnE

[
λcGc,t;λbGb,t ≥ λzGz,t ∀z

]
, the log of the average class-

weighted probability assigned to phoneme c when phoneme b is the max-
imum model prediction. Averages are taken over all frames of my vali-
dation partition of Common Voice [3] using my PPG model trained with
class-balancing on Mel spectrogram inputs. Red boxes show that the cor-
responding unvoiced fricative (/f/, /s/, /sh/) to each voiced fricative (/v/,
/z/, /zh/) is assigned relatively high probability, and vice versa. Class-
balanced training and class-weighting are used to remove column banding
indicative of natural phoneme frequency. Remaining column banding (e.g.,
“ah” is brighter than “ao”) is caused by differences in self-similarity (i.e.,
the yellow diagonal). (bottom) Zooming in to the row of voiced fricative
“v” demonstrates that corresponding unvoiced fricative “f” is usually the
next most likely prediction when “v” is most likely.
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distances (such as ∆PPG) provide the additional advantage of specifying precise frames

containing mispronunciations for playback and practice. However, it is not reasonable to

expect the user to perfectly match the phoneme durations of the reference. My pronunci-

ation distance can be easily extended to compare audio of different lengths and unknown

alignment by first performing dynamic time warping (DTW) to find an alignment. This is

similar to Bartelds et al. [8], who measure distance between unaligned speech recordings

by computing the optimal alignment using DTW and then taking the L2 distance between

aligned wav2vec 2.0 features. I compare ∆PPG to the method proposed by Bartelds et

al. in Section 4.7 (Figure 4.11; bottom).

The existing state-of-the-art lexical-based pronunciation distance [56] does not directly

compare to, e.g., wav2vec 2.0 latents [8], but note that “Pursuing [self-supervised] neural

models to predict accent distance (from Bartelds et al., 2022 [8]) is another potentially

worthwhile future direction, if the cost- and time-related barriers to training these models

could be addressed.” While I disagree with the cost- and time-related barriers—those

only apply to training a large, self-supervised model, not performing inference with a

pre-trained model as in Bartelds et al.—I note that my Mel-based PPG distance shows

obvious merits over the wav2vec 2.0 method proposed by Bartelds et al. [8] while taking

less than a week to train using one GPU and less than one Tb of data storage. In

practice—as with wav2vec 2.0—the availability of my code and pre-trained models for

inferring PPGs omits the need to perform such training: my proposed pronunciation

distance can be run on commodity hardware. In fact, me and a research collaborator are

currently developing an application for visualizing and comparing PPGs on a consumer

mobile device. In summary, my proposed PPG-based pronunciation distance addresses
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the entanglement of prior acoustic pronunciation distances [8] with attributes other than

pronunciation (Figure 4.11), exhibits high correlation with a standard speech intelligibility

metric (WER), and solves the open challenges of acoustic-based pronunciation distances

indicated by the authors of the state-of-the-art lexically-based pronunciation distance.

2.2. Viterbi-decoded neural pitch estimation

Vibrating objects produce sound. When those vibrations are periodic (and in the range

of human hearing), we perceive a pitch.4 In languages such as English and Spanish, pitch is

used to indicate emphases and phrase boundaries [83], and in tone-based languages (e.g.,

Mandarin Chinese) it indicates lexico-semantic content. Given that differences in pitch can

fundamentally change a listener’s perception of a speaker’s characteristics, such as their

current emotion [21], estimated pitch contours are widely used in speech synthesis [75, 91,

107], singing voice synthesis [58], voice conversion [89], voice privacy [85], and prosody

editing [74]. Physiologically, pitch contours used for speech synthesis aim to capture the

human perception of pitch produced by the opening and closing of the glottis at rates

within the audible frequency range. The frequency of the opening and closing of the

glottis is determined by the dimensions of the vocal mechanism as well as the amount of

contraction in the muscles of the larynx (Section 1.1.1).

Pitch estimation using machine learning techniques—neural networks, in particular—

significantly outperform prior digital signal processing (DSP) methods in accuracy and

noise robustness. However, the errors of prior neural pitch estimators induced inaccura-

cies, entanglement, and audible artifacts in the resulting audio, and the speed of neural

4This pitch typically agrees with the fundamental frequency (F0) [121], but can occasionally disagree [27].
As with prior works, I assume these disagreements can be ignored and refer to both as “pitch”.
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pitch estimation was significantly slower than DSP-based methods. Further, while DSP-

based methods are typically expected to work for any frequency range, neural pitch estima-

tors are only capable of performing estimation within the frequency range of the training

data. This makes it unclear as to how or whether neural pitch estimators can generalize

across audio domains (e.g., speech and music). In this chapter, I describe my proposed,

updated version of the FCNF0 neural pitch estimator [2] (FCNF0++) that addresses

these issues. FCNF0 is itself an extension of CREPE [35], an early and very popular

neural pitch estimator. FCNF0 and CREPE are both prior state-of-the-art neural pitch

estimators. In my original paper on pitch estimation [72], I also compare to DeepF0 [99]

and HarmoF0 [117]. DeepF0 achieves marginally better pitch estimation accuracy, but

is roughly 10x slower than FCNF0. HarmoF0 jointly performs pitch estimation on all

frames of a speech recording—as opposed to independently performing estimation on sin-

gle frames. This prohibits generalization due to domain-specific transition probabilities

being learned by the model. For these reasons, I use CREPE (Section 2.2.1) and FCNF0

(Section 2.2.2) as baselines.

My contributions to pitch estimation are as follows.

• I propose a set of techniques (Section 2.2.3) that improve the pitch estimation

accuracy of multiple recent neural pitch estimators: such as CREPE, FCNF0,

and DeepF0.

• I produce a high-fidelity pitch estimator with CPU inference speed approaching

fast, DSP-based methods and GPU inference speed that is hundreds of times

faster than real-time—making my proposed estimator amenable for pitch esti-

mation on large speech datasets.
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• I demonstrate how a neural pitch estimator can generalize well to training and

inference across audio domains, such as speech and music.

2.2.1. Baseline: CREPE

Convolutional REpresentation for Pitch Estimation (CREPE) [35] is a neural pitch es-

timator composed of six convolutional blocks followed by a linear layer. Each convolu-

tional block consists of a one-dimensional convolution, ReLU activation, batch normal-

ization [32], and dropout [104]. CREPE takes as input 1024 samples of a 16 kHz audio

waveform that has been preprocessed to have a mean of zero and standard deviation of

one. The network produces logits that yield independent Bernoulli posterior probabilities

over each pitch bin after sigmoid normalization.

(2.3) p(y = f |x); f ∈ F

where x ∈ R1024 are the input audio samples, y is the pitch of the input audio, f is the

center frequency of a quantized pitch bin, and F is a set of pitch bins. CREPE uses

|F | = 360 pitch bins, spaced every 20 cents between 31 and 2006 Hz.

(2.4) fi = 31 × 2
20i
1200 ; i = 1, . . . , |F |

CREPE uses a sigmoid activation and binary cross-entropy (BCE) loss on each pitch bin.

CREPE applies a Gaussian blur to the one-hot-encoded training targets (with a standard

deviation of 25 cents) followed by peak normalization. This encourages the network to

increase the variance of its prediction by assigning probability mass to adjacent pitch bins.
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2.2.2. Baseline: FCNF0

Fully-Convolutional Network for Pitch Estimation (FCNF0) [2] makes several modifica-

tions to CREPE. FCNF0 omits zero-padding from convolutional layers, as a significant

amount of inference time in CREPE is spent performing computations on zero-padding.

The authors replace the output linear layer with a convolutional layer to improve speed.

FCNF0 omits dropout to increase the network capacity and uses an 8 kHz sampling rate

for the input audio instead of 16 kHz. Otherwise, the six convolutional blocks of FCNF0

are identical to CREPE, but with a different number of convolution channels, and with

pooling strides and kernel sizes hand-tuned to produce output of a desired length provided

the reduction in the time dimension due to omitting zero-padding. The output categories

of FCNF0 are 486 pitch bins with a minimum pitch of 30 Hz and a bin width of 12.5

cents, resulting in a frequency range of 30–1000 Hz.

2.2.3. Proposed methods for pitch estimation

I propose seven modifications to FCNF0 in order to improve pitch estimation as follows.

Increase the frequency resolution | CREPE predicts bins with a quantization width

(i.e., the spacing between the centers of two adjacent bins) of 20 cents. FCNF0 predicts

bins with a width of 12.5 cents. Assuming a uniform distribution of noiseless, continuous

ground truth pitch values over the range of a given pitch bin, the expected value of the

error of the quantization of CREPE is five cents. To see this, note that the minimum

error is zero and the maximum error is one half-bin. The expected value of a uniform

distribution between real values a and b, where b > a, is (b − a)/2 (i.e., one quarter-

bin). I reduce the bin width to five cents (i.e., |F | = 1440 pitch bins), which reduces the
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expected quantization error to 1.25 cents. For comparison, human musicians can typically

determine whether one sine tone is higher or lower than another when the tones are at

least 3 cents apart, whereas distinguishing between higher or lower speech signals requires

at least 10-20 cents [37, 102]. These thresholds on human perceptual discrimination

are called just noticeable differences (JNDs). Note that my motivation for improving

pitch estimation accuracy is not solely to achieve a pitch accuracy within a certain JND;

improvements in pitch accuracy remove noise from the representation, which increases

the quality of speech synthesis and editing (Section 4.8; Table 4.5).

Train on frames without a pitch | Prior methods were trained using only frames in

which the ground truth annotations indicate that a pitch is present. However, a proper

pitch estimator must behave sensibly for audio without periodic structure (i.e., providing

a low confidence score to be used for accurate periodicity estimation (Section 2.3)). I

include frames without pitch labels during training, setting their ground truth pitch bin

to a random bin. This promotes a high-entropy uniform distribution (i.e., low confidence)

in aperiodic regions, which can be seen when comparing the inferred pitch distributions

of adjacent audio frames using FCNF0 and my proposed FCNF0++ (Figure 2.5).

Do not stop early | CREPE and FCNF0 are undertrained as a result of early stop-

ping (Section 2.2.1). These baseline models all stop when the validation accuracy has

not improved for 16,000 steps, where evaluation occurs every 500 steps. This leads to

significantly fewer training steps than training to convergence. Running training for an

indefinite period, I find that the model converges closer to (or slightly before) 250k steps.

I observe an insignificant amount of overfitting at or after convergence.
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Figure 2.5. Pitch posteriorgrams D ∈ R|F |×T produced by my reimplemen-
tation of the baseline FCNF0 pitch tracker [2] (middle) and my proposed
FCNF0++ (bottom), where Df,t = p(yt = f |xt) is the time-varying cat-
egorical distribution produced by performing inference on adjacent input
audio frames x1, . . . , xT . The input audio (top) is the same as in Fig-
ure 1.1: the speech utterance “I am sitting in a room, different from the
one you are in now”. To produce these visualizations, I apply softmax to
the |F |-dimensional network logits inferred for each time frame to produce
normalized distributions and take the natural log. Greater brightness in-
dicates higher probability. The y-axis frequency ranges are representative
of the pitch bin ranges of the baseline and proposed models. My proposed
methods produce a sharper peak during pitched frames and encourage uni-
form probability in unpitched regions, making it easy to identify these re-
gions algorithmically (Section 2.3).
figure-1-1-sitting.wav
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Do not normalize the input | CREPE and FCNF0 normalize the input audio to have

a mean of zero and a standard deviation of one. While this improves performance early in

training, removing early stopping demonstrates that normalization slightly harms pitch

and periodicity accuracy and marginally increases the amount of compute required. I

omit this normalization.

Replace binary cross entropy loss | Binary cross entropy independently predicts

Bernoulli distributions for each pitch bin at each time step. Categorical cross entropy

(CCE) predicts a single categorical distribution over all pitch bins at each time step.

CCE improves performance metrics when early stopping is omitted. It is also a more

sensible choice when used with my entropy-based periodicity measure, which assumes

the input is a categorical distribution. I apply the Gaussian blur used in CREPE to

all models, with a standard deviation of 25 cents applied to the training targets, which

improves performance for both BCE and CCE losses.

Increase the batch size | Prior methods use normalization methods such as batch and

weight normalization. Batch normalization induces instabilities when the batch size is

small [5]. Increasing the batch size can help to remove these instabilities. I verify this by

increasing the batch size from 32 to 128, where a batch size of 128 is the largest multiple

of two within the memory capacity of my GPU for all models.

Use layer normalization | Increasing the batch size may help, but batch normalization

is still non-robust to outliers. I use layer normalization [5] to solve this issue and im-

prove performance relative to batch or weight normalization. In other words, rather than

normalizing the network weights or normalizing over the batch and length dimensions, I

normalize over the channel and length dimensions.
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2.2.4. Viterbi decoding for neural pitch estimation

Many prior works set pitch to zero [69] or linearly interpolate pitch [72] in unvoiced

regions, in which the periodicity is below a threshold (Section 2.3). However, no such

threshold exists such that all voiced frames are above the threshold and all unvoiced

frames are below the threshold for any existing periodicity estimator (Figure 2.6). Fur-

ther, a binary voiced/unvoiced threshold cannot represent partially voiced frames (e.g.,

during a transition between voiced and unvoiced phonemes). As with some prior pitch es-

timators [35, 63], I utilize Viterbi decoding to decode pitch in Hz from frequency-specific

confidence scores. Let D ∈ R|F |×T be the pitch posteriorgram formed by concatenating

posterior distributions p(yt = f |xt) inferred by pitch estimator FCNF0++ for adjacent

frames of speech x1, . . . , xT on pitch bins with centers f ∈ F . Viterbi decoding [109]

finds the optimal sequence of pitch bins f ∗
1 , . . . , f

∗
T within D given initial and transition

probabilities. My initial probabilities are uniform and my transition probabilities are tri-

angular distributions that assign maximal probability to staying on the same pitch and

zero probability to pitch jumps greater than one octave between adjacent time frames.

The primary issue with utilizing Viterbi decoding for this purpose is its computational

complexity: given |F | pitch bins and T time frames, Viterbi decoding has time complexity

O(|F |2T ). Despite the ubiquity and generality of the Viterbi decoding algorithm, I could

not find an open-source Viterbi decoder fast enough to scale to large datasets. I develop

and open-source5 a Viterbi decoder that decodes time-varying categorical distribution D

on the VCTK dataset [119] 1.62x faster than a widely-used reference [66] on a 16-core

CPU. Using a batch size of 1, my GPU implementation on an A40 GPU is 1,760x faster

5github.com/maxrmorrison/torbi

https://github.com/maxrmorrison/torbi
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Figure 2.6. Decoding methods for neural pitch estimation | I com-
pare Viterbi decoding with linear interpolation of unvoiced regions. (top)
Pitch contours produced via each decoding method. (bottom) entropy-
based periodicity contour (black) (Section 2.3) and three voiced/unvoiced
periodicity thresholds. No voiced/unvoiced threshold α exists that suf-
ficiently separates voiced and unvoiced frames to remove spurious, large
pitch jumps in unvoiced regions. Viterbi decoding mitigates this issue and
produces relatively smooth pitch contours within unvoiced regions while
maintaining high accuracy in voiced regions.
figure-2-6-0016-000174.wav

than my 16-core CPU implementation. Using a batch size of 512, my GPU implementation

is 309,000x faster than a 16-core CPU (501,000x faster than reference). I have begun the

requisite process to have my Viterbi decoding implementation included in PyTorch [87].

2.2.5. Objective evaluation of pitch estimation

I design my evaluation to test the extent to which my proposed methods improve the

pitch accuracy of the widely-used neural pitch estimators I build upon. I further show
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that my models approach the CPU inference speed of state-of-the-art DSP-based pitch

estimators.

Evaluating the impacts of improving the unvoiced regions of pitch estimation requires

non-standard evaluation methods, as standard pitch estimation datasets do not contain

labels for unvoiced regions. Therefore, I evaluate the impacts of Viterbi-based pitch de-

coding (Section 2.2.4) using downstream speech synthesis and editing tasks (Section 4.8).

2.2.5.1. Data for training and evaluating pitch estimation. Obtaining accurate

ground truth pitch annotations for natural signals necessitates complex methods that

can induce noise and require humans to make manual corrections. Nonetheless, existing

datasets have proven sufficient for training and evaluating machine-learning-based pitch

estimators that outperform the alternative DSP-based methods. I use one music and

one speech dataset, each with ground-truth pitch and voicing annotations. For each

dataset, I perform a random 70-15-15 data split of files into training, validation, and test

partitions. For music, I use MDB-stem-synth [94], a music dataset used in multiple recent

pitch estimation papers. MDB-stem-synth consists of 230 solo stems from MedleyDB [9]

resynthesized from ground truth pitch for a total of 15.6 hours of music data. PTDB [88]

is the dataset most commonly used in recent work on pitch estimation for speech. For this

reason, I use PTDB as a representation of performance on speech data. PTDB consists

of 4,718 English speech and corresponding laryngograph recordings (contact microphones

placed on the neck) from 20 speakers (10 male and 10 female) using 2342 senteces from

the TIMIT corpus for a total of 9.6 hours of speech data. Ground truth pitch contours

for PTDB are extracted using RAPT [105] and then manually corrected.
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2.2.5.2. Evaluating pitch accuracy. I measure the pitch error of voiced frames using

the average error in cents. Let y and ŷ be pitch values in Hz.

(2.5) ∆¢(y, ŷ) =
∣∣1200 log2(y/ŷ)

∣∣
2.2.5.3. Evaluating inference speed. Fast pitch estimation is imperative for process-

ing large datasets as well as for real-time applications. I evaluate the inference speed of

each pitch estimator using both CPU and GPU compute, reporting the real-time factor

(RTF), or the average number of seconds it takes to perform pitch and periodicity estima-

tion on one second of audio. I use a hopsize of ten milliseconds. I use one Intel i9-9820X

3.30 GHz 10-core CPU for CPU inference and one NVIDIA GeForce RTX 3090 for GPU

inference. I use a batch size of up to 2048 frames during GPU inference, requiring multiple

forward passes for audio files greater than 2048 frames (20.48 seconds). I do not limit the

batch size for CPU inference. I do not provide GPU speeds for my baseline DSP-based

pitch estimators that do not provide GPU implementations. All reported speeds include

loading of audio, copying between devices, and saving results.

2.2.5.4. Experiments. I apply my proposed methods (Section 2.2) to FCNF0, produc-

ing FCNF0++. I perform training and inference on both MDB-stem-synth and PTDB.

I compare to my baseline models as well as three common open-source pitch estimators:

PYIN [63], an accurate DSP-based method; DIO [69], a fast DSP-based method written

primarily in C++; and my open-source torchcrepe [70] implementation of CREPE that

directly transfers the original CREPE weights trained on six music datasets from the
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original Keras model to PyTorch [87] and does not permit retraining.6 I perform estima-

tion using PYIN and DIO using a 16 kHz sampling rate, which I find outperforms an 8

kHz sampling rate for these estimators. I also perform ablations of each of my proposed

methods on my FCNF0++ model to assess their relative merit.

Human speech has a pitch range of approximately 50-550 Hz. I could impose this

as an inductive bias in the evaluation of PTDB by constraining the output to the pitch

range of human speech. I omit this inductive bias during pitch evaluation in order to

evaluate pitch estimation in the more challenging setting of an unrestricted frequency

range. During pitch estimation for speech synthesis (Chapter 3) and editing (Chapter 4),

I do apply this inductive bias by setting pitch posteriorgram probabilities to zero for pitch

values outside the human speaking range before Viterbi decoding (Section 2.2.4).

2.2.6. Pitch estimation results

Results for pitch estimation accuracy and speed for my baseline models, my proposed

models, and additional baseline neural- and DSP-based pitch estimators (Table 2.2) indi-

cate my proposed methods improve the pitch estimation accuracy. My reimplementation

of CREPE from scratch (Section 2.2.1) outperforms torchcrepe in speed due to auto-

matic mixed precision (AMP) [67] inference and in accuracy due to being jointly trained

6Since its release in 2020, my open-source torchcrepe package has been downloaded via pip over 3.7
million times and included in so-vits-svc, a state-of-the-art open-source singing voice conversion (SVC)
system that has been used in numerous viral social media posts featuring AI voice clones of celebrities,
presidents, and popular characters exchanging dialogue or singing. so-vits-svc was listed as one of the
“best inventions of 2023” by TIME magazine [106]. FCNF0++ was released in 2023 as part of Pitch
Estimating Neural Networks (penn) [72] and has exceeded 100,000 downloads within its first year. This
significantly outpaces the download rate of the first year of torchcrepe.

https://github.com/svc-develop-team/so-vits-svc
https://github.com/interactiveaudiolab/penn
https://github.com/interactiveaudiolab/penn


74

Pitch Time
Model ∆¢ ↓ RTF (GPU)↓ RTF (CPU)↓
Proposed (FCNF0++) 12.72 .0024 .0861
FCNF0 [2] (Section 2.2.2) 18.01 .0019 .0753
CREPE [35] (Section 2.2.1) 21.07 .0093 .3574
torchcrepe [70] 59.40 .0199 .6435
PYIN [63] 110.5 - .0639
DIO [69] 80.10 - .0177

Table 2.2. Objective evaluation of pitch estimation | Pitch error and
speed of my baselines, my proposed model, and common open-source mod-
els on both PTDB and MDB-stem-synth datasets. Pitch error in cents (∆¢)
and real-time factor (RTF) metrics are described in Sections 2.2.5- 2.2.5.3.
I consider FCNF0++ to be most useful model for most downstream appli-
cations, with competitive accuracy and speed. ↑ indicates that higher is
better and ↓ indicates that lower is better.

on speech data (i.e., cross-domain). FCNF0++ exhibits highly competitive pitch estima-

tion, CPU inference speeds approaching DSP-based methods, and GPU inference speeds

that can process large audio datasets in minutes.

Table 2.3 shows the pitch and periodicity accuracy of ablations of my proposed im-

provements relative to my FCNF0++ model (see Section 2.2). All of my proposed meth-

ods improve pitch or periodicity accuracy. The pitch accuracy of using only voiced frames

for training is comparable; however, my proposed method for training on unpitched frames

by selecting a random ground truth pitch bin substantially improves periodicity accuracy,

where periodicity is described in detail in Section 2.3. According to my ablation study

(Table 2.3), my most notable improvements are my smaller quantization width, unvoiced

training strategy, and larger batch size.
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Pitch Periodicity
Model ∆¢ ↓ F1 (Entropy)↑
FCNF0++ 12.72 .9816

Coarse quantization 17.23 .9814
Voiced only 12.62 .8496
Early stopping 13.32 .9804
Input normalization 13.14 .9811
Binary cross-entropy loss 13.64 .9815
Smaller batch size 13.63 .9800
Batch normalization 17.44 .9734

Table 2.3. Ablations of my proposed methods described in Section 2.2. For
example, “Early stopping” is FCNF0++ trained with early stopping and
“Voiced only” is FCNF0++ trained only on voiced frames. Note that rows
are not cumulative: each row independently evaluates removing exactly
one of my suggested improvements (see Section 2.2) relative to my proposed
FCNF0++ model. All models are trained and evaluated on both PTDB and
MDB-stem-synth datasets. Pitch error in cents (∆¢) and voiced/unvoiced
F1 metrics are described in Sections 2.3.2- 2.2.5. ↑ indicates that higher is
better and ↓ indicates that lower is better.

2.3. Entropy-based periodicity estimation

Not all speech sounds contain a pitch. Unvoiced phonemes (e.g., /s/, /k/, /f/) do

not produce periodic opening and closing of the glottis indicative of pitched (i.e., voiced)

speech sounds. Instead, the resonator (i.e., the shape of the nasal and vocal tract; Sec-

tion 1.1.1) perform a spectral filtering of wide-band aperiodic noise produced via air

pressure from the lungs. The addition of aperiodic noise lowers the periodicity of the

signal (i.e., the extent to which a segment of audio contains repetition at a regular inter-

val). Thus, periodicity estimators are typically derived from some measure of confidence

assigned by a statistical pitch estimator that a given frame of audio contains a pitch.

Periodicity contours are widely used for speech synthesis [107], where they are used for
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making binary decisions about whether speech is voiced (low periodicity indicates an un-

voiced region) or which portion of the pitch contour calculated on input speech is likely

to be meaningful (e.g., omitting unpitched regions when evaluating pitch distance).

My prior work in periodicity estimation [75] has made periodicity error a standard

method in the literature for evaluating speech reconstruction accuracy [52, 53, 97,

100]. This prior work uses as periodicity the pitch bin probabilities along the Viterbi-

decoded path of pitch posteriorgram D inferred using torchcrepe [70]. In this chapter,

I describe my more general entropy-based periodicity estimator that utilizes my pre-

trained FCNF0++ pitch estimator (Section 2.2) to perform state-of-the-art framewise

voiced/unvoiced classification (Section 2.3.2). Relative to prior methods, my entropy-

based periodicity estimator not only produces state-of-the-art framewise voiced/unvoiced

classification, but is decoder-free and elegantly handles polyphony.

Consider a periodicity value h ∈ [0, 1] for input audio frame x and p(y = f |x), the

categorical posterior distribution of a neural pitch estimator (Eq. 2.3). A periodicity near

zero indicates aperiodic noise and a periodicity near one indicates a noise-free, pitched

signal. I consider two methods for periodicity estimation.

Method one (max) is a simple, domain-agnostic baseline approach that takes the

maximum posterior probability over the pitch bins in each time frame.

(2.6) ĥ(max) = max
f∈F

p(y = f |x)

Method two (entropy) is my novel method that derives periodicity from the entropy of

the categorical posterior distribution. The entropy is scaled to the range [0, 1] by dividing

by ln |F |—the maximum entropy of a categorical distribution with |F | categories—and
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subtracted from 1 (i.e., low entropy indicates high periodicity).

(2.7) ĥ(entropy) = 1 − 1

ln |F |
∑
f∈F

p(y = f |x) ln p(y = f |x)

Unlike the direct prediction method of Gfeller et al. [23], my entropy-based periodic-

ity method requires no additional loss functions or modifications to the neural network

architecture. This reduces complexity and improves training and inference speed. Unlike

baseline method one (max ), my entropy-based method can elegantly handle polyphony.

Consider a peak-normalized sine wave with a frequency within the range of the pitch

estimator. This signal should produce a periodicity of one. Now, add another sine wave

at a different frequency also within the range of the estimator, so that the posterior dis-

tribution produced by the model has two peaks. The resulting signal should still have a

periodicity of one. Method one (max ) produces a periodicity of 0.5, while my proposed

entropy-based method produces a periodicity of 1 − 1
ln |F |(2 × 0.5 × ln 0.5). For my pro-

posed |F | = 1440, this produces a periodicity of 0.905. As |F | approaches infinity, the

periodicity approaches one, as desired. Note that my prior method of using the pitch bin

probabilities along the Viterbi-decoded path of pitch posteriorgram D produces the same

issue as method one (max ).

2.3.1. Binary voicing decisions

Once I have produced a periodicity estimate, I can perform thresholding to produce per-

frame classifications of whether a pitch is present. This is referred to as the voiced/unvoiced

decision in the context of speech. Specifically, I aim to make a sequence of binary

voiced/unvoiced decisions v̂1, . . . , v̂T from inferred periodicity contour ĥ1, . . . , ĥT . I use
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Model Entropy (Eq. 2.7) ↑ Max (Eq. 2.6) ↑
Proposed (FCNF0++) .9816 .9813
FCNF0 [2] (Section 2.2.2) .9602 .9361
CREPE [35] (Section 2.2.1) .9626 .9509
torchcrepe [70] .9293 .9305
PYIN [63] .9199†

Table 2.4. Objective evaluation of periodicity | Voiced/unvoiced F1
score of periodicity estimation using my baselines, my proposed model, and
common open-source models on both PTDB and MDB-stem-synth datasets.
The voiced/unvoiced F1 metric is described in Section 2.3.2. Baseline mod-
els torchcrepe and PYIN are described in Section 2.2.5.4. ↑ indicates that
higher is better and ↓ indicates that lower is better.
†PYIN uses the sum of peak-picked densities for periodicity decoding.

the following decision rule, where α ∈ [0, 1] is a voicing threshold hyperparameter.

(2.8) v̂t = ĥt > α; t = 1, 2, . . . , T

2.3.2. Objective evaluation of periodicity estimation

I evaluate periodicity via classification F1 score of the binary voiced/unvoiced decision

(Section 2.3.1). I extract voicing decisions from estimated periodicity using both the max

and entropy periodicity methods (Section 2.3). I use the same data 2.2.5.1 and baseline

methods 2.2.5.4 as used for evaluation of pitch estimation and report the F1 score of the

binary voicing classification for each pitch estimation method that I evaluate.

For each voicing threshold hyperparameter search, I use the validation data parti-

tions of both datasets to perform two grid searches using values α = 0.0, 0.1, . . . , 0.9 and

α = 2−i; i = 1, 2, . . . , 9 to produce candidate threshold value α∗. I then assume the

hyperparameter landscape is convex at α∗ and perform a sequential grid search, reducing

the step size from 0.05 by a factor of two at each step for eight steps. This can be thought
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Figure 2.7. Hyperparameter landscape of the voiced/unvoiced threshold
on the entropy-based periodicity estimate produced by FCNF0++ with
(blue) and without (orange) my proposed unvoiced training strategy (Sec-
tion 2.2.3) on PTDB and MDB-stem-synth. Stars indicate optimal F1 val-
ues found via a fine-grained binary search (Section 2.3.2). My unvoiced
training strategy of selecting a random bin (Section 2.2.3) improves the op-
timal F1 score of the model and produces state-of-the-art voiced/unvoiced
classification F1 scores across a large region of the hyperparameter space.

of as fine-tuning α∗ via gradient ascent on the F1 score with an exponentially decreasing

step size, where first-differences are used to measure the gradient direction. This fine-

grained hyperparameter search is necessary for all models without my proposed unvoiced

training strategy. Without this training strategy, models exhibit a narrow peak for the

optimal hyperparameter value (Figure 2.7).

As seen in Table 2.4, training on unvoiced frames significantly improves periodicity

estimation accuracy. The significance of this effect is visible in Figure 2.7. Without my

unvoiced training strategy, the optimal F1 score decreases and the landscape of unvoiced

thresholds with a competitive voiced/unvoiced classification F1 score narrows.
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2.4. Multi-band A-weighted loudness

Human perception of sound occurs due to variations in sound pressure at the surface of

the tympanic membrane within the ear. Larger variations in sound pressure cause larger

displacements of the membrane. Within the audible frequency range (approximately

20 - 20,000 Hz), larger displacements are perceived as being louder. However, equal

sound pressures are not perceived as equally loud at all frequencies. This phenomenon

is captured via equal-loudness contours that indicate the sound pressure levels at which

simple sinusoidal tones at varying frequencies are perceived as equally loud.

Audio recording devices convert physical sound pressure variations traveling through

the air into variations in electrical current, which are encoded by an analog-to-digital

converter into a format amenable to storage, modification, and transmission by a computer

(e.g., 16-bit floating point values between -1 and 1, inclusive, at a sampling rate of 44,100

Hz). However, human loudness perception occurs at a more coarse sampling rate, and

this format does not encode equal-loudness contours, necessitating a transformation from

the sample resolution to a lower sample resolution (e.g., one floating-point value every

ten milliseconds). Specifically, I use the A-weighted loudness (Figure 2.8; bottom) [65]: a

frequency-average of a weighted magnitude spectrogram, with per-channel weights derived

from human perceptual studies of loudness variation. Let Ω = {ω1, . . . , ω⌊N/2+1⌋} be

the sorted, real-valued, positive FFT frequencies of an N -dimensional complex FFT:

ωc = s
N

(c− 1); c = 1, . . . , ⌊N/2 + 1⌋. Given a frame of audio xt with sampling rate s, its

A-weighted loudness at = LA(xt; Ω) is as follows.

(2.9) LA(xt; Ω) =
1

|Ω|
∑
ω∈Ω

max
(
BL, log10

∣∣FFT(xt, ω)
∣∣ + A(ω) −BH

)
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A is the A-weighted transformation of frequency ω based on human perceptual data,

and BH and BL are reference A-weighted decibel (dBA) values. I use BH = 20 and

BL = −100.

Reconstructing speech from my representation using A-weighted loudness produces

worse loudness reconstruction relative to Mel spectrograms (Table 3.1; w/o multi-band),

but Mel spectrogram vocoding entangles pitch and pronunciation. To address this trade-

off, I propose using multi-band A-weighted loudness (Figure 2.8). I group frequencies

into K bands Ω1, . . . ,ΩK = {ω1, . . . , ω⌊|Ω|/K⌋}, . . . , {ω(K−1)⌊|Ω|/K⌋+1, . . . , ω|Ω|} and compute

the average A-weighted energy within the band ak,t = LA(xt; Ωk); k = 1, . . . , K. A

hyperparameter search over 2, 4, 8, 16, and 32 bands indicates optimal disentanglement

and loudness reconstruction at 8 bands.

One interesting side effect of this representation is that speech content creators can

edit loudness using a different number of bands than is used during synthesis. For ex-

ample, volume modifications performed in speech content creation often specify changes

(in decibels) that are applied uniformly across all bands, with magnitudes and directions

of change that vary between words or phrases. This familiar interface can be achieved

by having the user edit the single-band A-weighted loudness (e.g., Figure 1.2) and corre-

sponds to a proportional scaling of each band of the underlying multi-band loudness. For

efficiency, the single-band loudness can be computed directly as a channel-wise average

of the multi-band loudness. As shown in Section 4.3, editing the single-band A-weighted

loudness within my proposed speech editing system can produce independent control over

volume and the timbral correlates of volume.
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2.5. Prior work in speech representation

In this chapter, I described my proposed disentangled and interpretable speech rep-

resentation that satisfies the four properties (outlined at the start of this chapter) as

prerequisite for speech editing representations: invertibility (Properties 1 & 2), inter-

pretability (Property 3), and disentanglement (Property 4). Next, I describe representa-

tions of speech that precede my proposed representation and the relative advantages of

my representation.

2.5.1. Time-frequency representations

Time-varying representations of frequencies such as a Mel spectrogram (Section 1.1.2;

Figure 1.1) are widely-used and interpretable speech representations that have been used

in the context of neural networks as loss functions [40], output representations [96], and

input representations [60, 81]. Vocoding using Mel spectrograms produces high-fidelity

speech reconstruction (Section 3.4), and is commonly used as a high-anchor for text-to-

speech research. However, time-frequency representations are not disentangled: there is

no simple way to edit them to independently change, e.g., the pronunciation or pitch. My

prior work [74] as well as Wang et al. [115] propose to disentangle speech attributes from

the Mel spectrogram by tuning the number of bottleneck channels to remove information.

My subsequent work omits the bottleneck by replacing the Mel spectrogram with an

interpretable pronunciation representation that enables fine-grained pronunciation editing

(Section 2.1) as well as an interpretable multi-band loudness representation (Section 2.4)

inspired by this general intuition of constraining spectral features to be low-dimensional.

I find applying the low-dimensional constraint directly to the spectral features to be the
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more sensible choice, as the bottleneck encoder is trained to produce optimal speech

reconstruction and is significantly more capable of using spurious correlations between

imperceptible, low-energy time-frequency bins to minimize training losses—at the expense

of entanglement.

Morise et al. [69] propose analysis-modification-synthesis of speech using (1) a time-

frequency representation, (2) aperiodicity, and (3) pitch. Time-Domain Pitch-Synchronous

Overlap-and-Add (TD-PSOLA) [80] is a non-parametric method that first segments the

audio at the start of each repetition in the waveform (or at equal intervals in unvoiced

regions) and uses overlap-add to combine modified (e.g., repeated) audio frames. TD-

PSOLA may be the most widely-used method for pitch-shifting and time-stretching of

speech, given its inclusion in the popular PRAAT software for speech analysis and manip-

ulation [10]. Both WORLD and TD-PSOLA are digital signal processing (DSP) meth-

ods that modify formants (Section 4.4) in typically undesirable ways when performing

pitch-shifting. My proposed speech editing system not only avoids these unnatural for-

mants by default, but allows speech content creators to apply a high-fidelity version

of this formant modification effect for creative purposes (Section 4.4). In Chapter 4,

I utilize both WORLD and TD-PSOLA as baseline methods for pitch-shifting 4.1 and

time-stretching 4.2.

2.5.2. Lexical representations

Lexical representations such as graphemes (characters) and phonemes (discrete units of

speech sound) are inputs for text-to-speech (TTS) systems [4]. Ren et al. [91] demon-

strate TTS with phoneme duration control;  Lańcucki [48] demonstrates pitch control.
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However, when used for analysis-modification-synthesis, graphemes and phonemes induce

coarse discretization, causing ambiguous pronunciation. Further, TTS phoneme inputs

are often produced from text, ignoring the input speech pronunciation and requiring a

transcript. This makes speech audio non-invertible (or only partially invertible) relative

to its corresponding lexical representation.

2.5.3. Latent representations

Latent speech representations are non-interpretable and typically not disentangled. These

representations exhibit strong performance in speech reconstruction [45] and genera-

tion [111]. However, precise control of, e.g., pitch is difficult, as pitch is entangled

within a non-interpretable representation. Notable exceptions are representations with

partial speaker disentanglement [41], pitch-agnostic latents of automatic speech recog-

nition (ASR) models [14, 43], and discrete factorizations [33]. However, lack of inter-

pretable pronunciation representation prohibits fine-grained pronunciation control.

2.5.4. Source-filter representations

Neural source filter (NSF) methods [73, 84, 114, 120] represent speech as a periodic

source excitation and a time-varying finite impulse-response (FIR) filter. NSF meth-

ods demonstrate fast, accurate, and high-fidelity pitch-shifting. However, the compute

time required to perform analysis-modification-synthesis with existing NSF models is con-

strained by slow pitch estimators required for sufficient pitch accuracy. As well, no NSF

model has demonstrated pronunciation or spectral balance editing.
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No prior speech representation of any type has demonstrated fine-grained, disentangled

control of volume from the timbral correlates of volume (Section 4.3).
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Figure 2.8. Multi-band A-weighted loudness | My proposed multi-band
A-weighted loudness for interpolating the trade-off between disentangle-
ment and loudness reconstruction. (top) A-weighted magnitude spectro-
gram (equivalently, a 513-band A-weighted loudness). (bottom) Single-
band A-weighted loudness. (middle) From top to bottom, the 16-band,
8-band (optimal), and 4-band A-weighted loudness.
figure-2-8-0097-000680.wav
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CHAPTER 3

High-fidelity interpretable speech reconstruction

My proposed process for speech editing consists of (1) encoding the speech in an

appropriate representation (Chapter 2), (2) editing the speech representation according

to one’s creative and technical vision, and (3) synthesizing a new speech waveform from

the edited speech representation. This chapter addresses (3) as well as methodologies for

the evaluation of speech synthesis, in which no edits are performed during (2). In the

following chapter (Chapter 4), I showcase the speech editing capabilities of my proposed

system and (when applicable) demonstrate the efficacy of my system relative to baselines.

Speech synthesis systems typically take as input either unaligned lexical features de-

rived from text (e.g., an ordered sequence of phonemes without timing information) or

aligned acoustic features (e.g., Mel spectrograms (Section 1.1.2) or my proposed, inter-

pretable representation (Chapter 2)). Systems that synthesize speech from lexical features

are text-to-speech (TTS) systems, whereas systems that synthesize speech from acoustic

features are vocoders. TTS systems are usually slower, requiring more model parameters

and more expressive generative models to compensate for lexical features having higher

conditional entropy with the speech signal relative to acoustic features (e.g., the prosody

must be generated). However, this depends on the quality of the acoustic features: acous-

tic features that are not sufficiently informative necessitate using higher-capacity TTS

models as opposed to vocoders. I found this to be true in my previous work [15]: I

trained a HiFi-GAN [40] speech vocoder (a standard, commonly used neural vocoder)
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to synthesize speech from (non-sparsified) PPGs (Section 2.1) and FCNF0++ pitch con-

tours using linear interpolation instead of Viterbi decoding (Section 2.2; Figure 2.6). This

vocoder training frequently diverges—likely due to gradient confusion [95], as gradient

magnitudes approach zero during divergence—but succeeds when using a VITS text-to-

speech model [34] (a standard, commonly-used TTS system) that I minimally modify by

removing the duration prediction module in order to permit time-aligned, frame-resolution

input features. VITS consists of a duration predictor, flow-based distribution matching

with the linear spectrogram, and a jointly-trained HiFi-GAN vocoder: VITS without

duration prediction is equivalent to HiFi-GAN jointly trained with flow-based distribu-

tion matching with the linear spectrogram. This small change appears vitally important

when the representation contains less information (or more noise) [57]. In other words,

speech synthesis necessitates a minimum mutual information (or, equivalently,

a maximum conditional entropy) below which training diverges. This can be

compensated for by increasing the expressivity of the generative model (e.g., using the

flow-based distribution matching) in order to generate any missing information. However,

increasing the expressivity of the generative model also induces stochasticity, which causes

the generated speech to sound different than the original speech. This poses the question:

does my proposed representation (Chapter 2) have sufficiently low conditional entropy

with the synthesized speech to enable speech synthesis using efficient neural vocoders

such as HiFi-GAN?

In this chapter, I demonstrate that my proposed representation (Chap-

ter 2) can be used to perform high-fidelity speech vocoding using the standard
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HiFi-GAN vocoder [40] with objective and subjective evaluation showing com-

parable performance to Mel spectrograms (Section 3.4). After establishing that

my representation is capable of high-fidelity reconstruction, I demonstrate various exist-

ing speech edits using my proposed representation and compare objective and subjective

speech editing results with edit-specific baselines.

3.1. Neural speech editing model

My high-fidelity, fine-grained neural speech editing model (Figure 1.2) is an off-the-

shelf HiFi-GAN vocoder [40] that has been trained on speech encoded in my proposed

disentangled, interpretable representation (Chapter 2). I further condition my neural

speech editing model on three time-invariant features: augmentation ratios rf and rl

(Section 3.2.1) and a jointly trained speaker embedding (Section 3.2.2). The HiFi-GAN

vocoder consists of a generator neural network that performs vocoding and multiple dis-

criminator neural networks that are jointly trained to distinguish between synthesized

and real speech. Because there are typically multiple discriminators, they jointly domi-

nate the total training time. As such, the design of the discriminator(s) is a key choice

affecting both synthesis quality and speed. One discriminator used in HiFi-GAN is the

multi-scale spectrogram discriminator (MSD) [40]. I replace the MSD with the more re-

cent complex, multi-band spectrogram discriminator [45], which allows the discriminator

to further utilize phase information to distinguish between real and fake speech.

I train for 400k steps on one A40 GPU, where each step corresponds to training the

model on a batch of 64 speech recordings excerpts. Each excerpt is a randomly-selected,

16,384-dimensional, contiguous speech waveform with a sampling rate of 22,050 (i.e., 0.74
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seconds), as well as the corresponding 64 frames of my proposed speech representation.

I train my speech editing model to reconstruct the 16,384-dimensional speech excerpt

from its corresponding 64 frames of my proposed representation. I use the AdamW

optimizer [61] with a learning rate of 2 × 10−4. All other details of neural vocoder

architecture and training are unchanged from the original HiFi-GAN implementation.

3.2. Data

I use VCTK [119] for training and evaluation. VCTK is a standard dataset for speech

synthesis that consists of 82.4 hours of clean speech from 109 speakers. I select five

male and five female test speakers. I select ten utterances from each test speaker for

a total of 100 test utterances. Utterances used for subjective evaluation (Section 3.3.2)

should be long enough to contain salient differences, but short enough to not exhaust the

attention span of the participant. Therefore, I require all 100 test utterances be between

four and ten seconds in length. I reserve 64 random validation utterances. I omit test

or validation data recorded with a different microphone from training. In Section 4.5, I

show my proposed speech editing model is also capable of adaptation to unseen speakers

from the DAPS [82] dataset. I perform adaptation independently on five male and five

female speakers, with 10 test utterances between four and ten seconds in length for each

adaptation speaker and all remaining data for each speaker used for training.

3.2.1. Augmentation

Prior works use resampling [74], pitch-shifting [6], or volume modifications [100] to aug-

ment a dataset speech recordings used for training neural vocoders. However, these
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methods cannot be directly used in speaker-conditioned generation without causing the

synthesized speech to also inherit any artifacts found in the augmented training data.

For example, using resampling as data augmentation produces pitch-shifted and time-

stretched audio, but preserves relative formant energies. While the frequency ratios be-

tween formants should be preserved (to maintain a harmonic relationship), energy ratios

between formants should not be preserved during pitch-shifting; they should adhere to

the conditional distribution of formant energies given F0 and speaker. Perceptually, these

unnatural formants induce the vocal effect used by Alvin from Alvin and the Chipmunks.

I propose a technique that increases the range of the desired audio feature within

the training distribution and enables the artifacts induced by data augmentation to be

independently controlled. I apply my proposed augmentation technique to the disentan-

glement of pitch (F0) from spectral balance, as well as the disentanglement of volume

from the timbral correlates of volume.

Disentangling pitch and spectral balance | Let Rf (x; d, e) be a function that resam-

ples speech recording x from sampling rate d to sampling rate e. Given original sampling

rate s, target sampling rate q, and random pitch shift factor rf ∼ Uniform(−1, 1), I aug-

ment training data with xf = Rf (Rf (x; 2rf s, s); s, q). For example, VCTK [119] has an

original sampling rate of s = 48, 000, while my system synthesizes speech at q = 22, 050.

I first resample from sampling rate 2rf s to sampling rate s, which performs corresponding

pitch-shifting and time-stretching while preserving relative formant energies. As described

at the start of this section, preserving relative formant energies during pitch-shifting

sounds unnatural. Then, I resample the speech from sampling rate s to sampling rate q

for use with my system. Resampling to target sampling rate q afterwards prevents any
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loss of frequency bandwidth as long as rf < s
q
. I pass rf to the network during training,

so the model learns that low rf indicates more energy at low-frequencies and high rf in-

dicates more energy at high-frequencies. I create one randomly pitch-shifted copy of each

training utterance. In Section 4.4, I show that this resampling-based data augmentation

enables control over the relative amount of energy in low- and high-frequencies.

Disentangling volume and the timbral correlates of volume | Let Rl(x; g) be a

function that increases or decreases the volume of speech recording x by g decibels. Given

a randomly sampled volume shift rl ∼ Uniform(−1, 1), I augment training data with xl =

Rl(x; 12rl). If any value in xl is outside [−1, 1], I draw a new sample for rl until xl is within

[−1, 1]. I pass rl to the network during training. I create one randomly volume-shifted

copy of each training utterance. During generation, setting rl > 0 increases volume,

rl < 0 decreases volume, and rl = 0 maintains the current volume; rl does not control the

timbral correlates of volume. Instead, framewise edits to A-weighted loudness produce

audible changes in timbre corresponding to louder or quieter speech while maintaining

accurate volume control (Section 4.3). As mentioned in Section 2.4, these framewise edits

can be performed on either the multi-band or the corresponding single-band loudness—

with the latter typically being more intuitive. While this kind of editing is technically

possible without data augmentation, it requires either significantly larger edits to the

A-weighted loudness to have a similar perceptual effect—which causes clipping when too

loud and out-of-distribution artifacts when too quiet—or performing multiple small edits,

which is both inefficient and more likely to induce artifacts. Thus, my proposed data

augmentation method can be seen as a perceptual loudness compressor, which modifies

the scale of volume relative to the timbral correlates of volume so that smaller changes in



93

volume have a larger perceptual effect. Control over the timbral correlates of volume—

with or without my proposed data augmentation—has not been demonstrated by any

prior work.

3.2.2. Preprocessing

The ideal (e.g., most intuitive) speech representation for speech content creators perform-

ing speech editing tasks may not be the same as the ideal representation for performing

high-fidelity speech synthesis. My proposed multi-band A-weighted loudness (Section 2.4)

is one example of this, wherein the user typically edits only one band (the average), but

multiple bands are passed to the neural network to lower conditional entropy with the

speech signal and improve fidelity. Two additional examples of transforming my rep-

resentation to be more apt for consumption by a neural network occur in my speech

editing system: (1) the multi-band loudness is scaled from perceptually comprehensible

units (dBA) to the range [-1, 1] prior to speech synthesis to alleviate the need for the

network to learn the (relatively large) scale of common dBA values and (2) I encode the

pitch contour in an embedding table that permits jointly learning a multi-dimensional

representation for each bin in a set of quantized pitch bins. Prior works utilize embed-

ding tables that quantize pitch conditioning into equal-width bins [73, 107, 115]. This

leads to infrequently used bins at endpoints of the pitch range of the training distribu-

tion that cause instability and artifacts. I change the bin spacing so each pitch bin is

accessed equally often during training. This produces a variable-width quantization that

allocates more bins to frequently used pitch regions (e.g., 100 to 200 Hz). The effect
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Figure 3.1. Variable-width pitch quantization | (left) Training dis-
tribution of pitch bins in VCTK before my proposed data augmentation
(Section 3.2.1) and variable-width pitch quantization (Section 3.2.2). (mid-
dle) The same distribution after augmentation. (right) The same distri-
bution after augmentation and variable-width quantization. My proposed
variable-width pitch quantization transforms the spacing of the 256 pitch
bins to produce a uniform training distribution, which corresponds to the
maximum-entropy distribution (ln 256 = 5.545).

of this variable-width quantization are visualized in Figure 3.1. I use 256 bins and a

64-dimensional embedding table.

I also employ an embedding table to jointly learn a multi-dimensional representation

of each speaker in the training dataset. During speaker adaptation, I assign the new

speaker an index of zero during training and inference, which overwrites the corresponding

row in the embedding table. This is standard practice for multi-speaker and speaker

adaptive speech synthesis systems. More recent systems demonstrate that scaling to tens

of thousands of hours of training data can enable few-shot generalization (i.e., only using

a few seconds of audio from a new speaker) with high perceptual naturalness and speaker

similarity. My current system requires significantly more speech (at least 5-10 minutes) to

achieve high perceptual fidelity and speaker similarity. Provided sufficient compute and

data resources, it is straightforward to combine the efficacies of these few-shot systems

with those of my proposed representation in future work.
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3.3. Evaluating speech synthesis and editing

Consider a speech recording synthesized using my proposed system. How can one

evaluate this speech to determine the efficacy of my system relative to baseline systems?

In general, a system for reconstructing and editing speech should be accurate—in that

it closely reflects the original audio as well as any edits performed by a speech content

creator–and synthesize perceptually high-quality speech. Using the invertibility of my

speech representation, I evaluate accuracy by encoding the edited speech in my inter-

pretable representation and comparing the reconstructed representation with the repre-

sentation used as input to produce the edited audio (Section 3.3.1; Figure 3.2). I further

design and perform subjective evaluations (Section 3.3.2) that evaluate the perceptual

quality of speech synthesis and editing relative to baseline systems.

3.3.1. Objective evaluation of speech synthesis and editing

I design my objective evaluation of speech synthesis and editing to determine the ex-

tent to which the synthesized speech accurately reflects speech attributes specified by

the input speech representation. In other words, I propose to evaluate the extent to

which the synthesized speech exhibits the specified pronunciation (Section 3.3.1.1), pitch

(Section 3.3.1.2), periodicity (Section 3.3.1.3), and loudness (Section 3.3.1.4).

Prior works also perform objective evaluation of speaker “similarity” and speech “qual-

ity”. However, I find that prior objective metrics for speaker similarity are not disentan-

gled: edits such as pitch-shifting and time-stretching cause large dissimilarities in the

Resemblyzer [110] and WeSpeaker [112] speaker representations irrespective of pitch-

shifting or time-stretching method. This indicates that standard, widely-used speaker
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Figure 3.2. Speech reconstruction overview | I (1) encode an example
speech utterance in my proposed representation (left), (2) perform speech
synthesis (top), (3) encode the synthesized speech in my representation
(right), and (4) overlay the speech representation inferred from synthe-
sized speech on the input representation to demonstrate the reconstruction
accuracy of my speech representation (center).
Blue SPPGs are inputs, red SPPGs are inferred from synthesized speech,
and violet indicates accurate reconstruction. For pitch, periodicity, and A-
weighted loudness, the features inferred from synthesized speech are shown
in black, while input features are green when the inferred feature is within
an error threshold and red when outside that threshold. I use a threshold
of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-3-2-0016-000442-original.wav

figure-3-2-0016-000442-reconstructed.wav

representations such as Resemblyzer and WeSpeaker entangle speaker information with

at least speaking rate and mean F0. If such a representation existed that fully disen-

tangled speaker information from my proposed representation, it could be used for not
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only evaluating speaker similarity but zero-shot voice conversion. I believe this is possible

using jointly-learned discrete features [41].

Speech quality metrics such as Mel-cepstral distortion (MCD) [44] and PESQ [31]

rely heavily on accurate reconstruction of precise spectral features. This makes both

of these metrics impossible to use for evaluating the editing of pitch, duration, loudness,

spectral balance, or pronunication, as no ground-truth spectral features exist for the edited

speech. Further, these methods prioritize the accurate reconstruction of spectral features

over perceptual quality, which induces bias in favor of spectral input features that more

closely represent, e.g., background noise, channel effects, and noise floor reconstruction

(i.e., the decibel level of the sum of all unwanted sounds in a signal).

3.3.1.1. Evaluating pronunciation accuracy. I use my proposed pronunciation dis-

tance (∆PPG) between input SPPGs and SPPGs inferred from edited audio. As described

in Section 2.1.4, ∆PPG demonstrates high correlation with word error rate (WER), which

measures the number of errors made using an automatic speech recognition (ASR) system

such as Whisper [90]. Whisper-based WER is commonly used as an evaluation metric

for speech intelligibility. The most recent version of Whisper (Whisper-V3), is trained us-

ing roughly five million hours of data—including four million hours of unsupervised data

gathered via web scraping. Because Whisper is trained using such large data scraped

from the web, it is highly likely to contain not only my exact test utterances, but var-

ious common transformations such as Mel spectrogram reconstruction and DSP-based

modifications—even though data augmentation was not explicitly used by the authors.

My experience using WER to evaluate speech reconstruction and editing in this work has

indicated problematic behaviors that can be explained by overfitting to noise in the speech
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signal not reconstructed by my proposed representation. For example, the WER of speech

reconstruction using Mel spectrograms in this chapter is 1.3%, while the WER of per-

forming pitch-shifting and time-stretching using baseline DSP methods TD-PSOLA [80]

or WORLD [69] to the point of clearly negatively impacting speech intelligibility produces

a WER of 0.6%—less than half of the error of high-fidelity Mel reconstruction. I hypoth-

esize that Whisper-V3 is highly overfit to imperceptible details in the speech waveform

that are preserved during DSP-based editing using, e.g., TD-PSOLA or WORLD. This

would make WER an inappropriate choice of evaluation metric for evaluation of, e.g.,

speech editing. This hypothesis was independently validated by Wang et al. [113] less

than a month prior to my dissertation defense. This highlights a significant advantage for

using my proposed pronunciation distance that is trained on a single, standard dataset

(Common Voice [3]) and is relatively straightforward to train on other datasets compared

to, e.g., Whisper [90]—making it easy to avoid data leakage during evaluation.

3.3.1.2. Evaluating pitch accuracy. I measure pitch error as the average framewise

error in cents.

(3.1) ∆¢ (y, ŷ) =
1200

|V|
∑
t∈V

∣∣log2(yt/ŷt)
∣∣

y = y1, . . . , yT is the ground truth frame resolution pitch contour in Hz inferred from

the original speech recording; ŷ = ŷ1, . . . , ŷT is the pitch contour in Hz inferred from

synthesized speech; and V is the set of voiced time frame indices where both the orig-

inal and re-synthesized speech contain a pitch (i.e., when the entropy-based periodicity

exceeds 0.1625; Figure 2.7). Evaluating pitch reconstruction in this manner is not novel;

however, the efficacies afforded by improved pitch estimation (Section 2.2) as well as
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voiced/unvoiced classification (Section 2.3.1) enable more accurate evaluation of pitch

accuracy relative to prior works.

3.3.1.3. Evaluating periodicity accuracy. I propose to measure the average frame-

wise RMSE of the entropy-based periodicity of the FCNF0++ pitch estimator (Sec-

tion 2.3). My periodicity error is the average RMSE between ground truth frame resolu-

tion periodicity contour h inferred from the original speech recording and the predicted

periodicity contour ĥ inferred from synthesized speech.

(3.2) ∆ϕ
(
h, ĥ

)
=

√√√√ 1

T

T∑
t=1

(
ht − ĥt

)2

My previous iteration of this periodicity evaluation using my previous periodicity esti-

mator [75] has become a standard method in the literature for evaluating speech recon-

struction accuracy [52, 53, 97, 100]. As discussed in Section 2.3, using my proposed

entropy-based periodicity instead of my previous, Viterbi-based periodicity estimator has

further advantages of being decoder-free (i.e., faster in some cases) and as well as elegantly

handling polyphonic audio.

3.3.1.4. Evaluating loudness accuracy. I measure loudness error as the average frame-

wise error of the single-band A-weighted loudness [65] in decibels. My loudness error is

the average RMSE between ground truth frame resolution loudness contour a = a1, . . . , aT

computed from the original speech and predicted loudness contour â = â1, . . . , âT com-

puted from synthesized speech.

(3.3) ∆dBA (a, â) =

√√√√ 1

T

T∑
t=1

(at − ât)
2
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3.3.2. Crowdsourced perceptual evaluation

Existing metrics for objective evaluation of speech synthesis are not sufficient to guaran-

tee a corresponding improvement in human perception of synthesis quality, naturalness,

or accuracy. Therefore, it is standard practice to include subjective evaluations of the

proposed speech synthesis system relative to reference files (e.g., the original audio) or

baseline speech synthesis systems. Two primary challenges exist in performing

robust subjective evaluation relative to objective evaluation.

• Challenge 1: Finding attentive participants | Acquiring high-quality sub-

jective evaluation data requires participants who are attentive and engaged in

the evaluation task. As well, producing statistically significant results necessi-

tates a sufficiently large (task-specific) number of participants. Crowdsourced

survey platforms offer a solution: researchers upload their evaluation task (e.g.,

as a web page) to a third-party service (e.g., Amazon Mechanical Turk (MTurk)

or Prolific) and specify criteria that participants must satisfy to be allowed to

perform the evaluation in exchange for payment. For example, I perform my

subjective evaluations on MTurk and require three participant qualifications: (1)

participants must be located in the US, (2) participants must have completed

at least 1,000 assignments, and (3) participants must have a minimum approval

rating of 99%. I further perform my own prescreening listening test, which en-

sures participants are in a listening environment suitable for discerning auditory

features of interest. These rather strict measures for filtering participants are

designed to handle the MTurk ecosystem that includes bots, VPN usage, and

black market sales of MTurk worker accounts that emerged due to the relatively
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high compensation of performing surveys on MTurk compared to the median

salary in many nations. Such accounts have been linked to poor data qual-

ity on some tasks [116]. However, recent policy changes such as the European

Union’s directive on administrative cooperation 7 (DAC 7)—which instates tax

reporting requirements on all digital platforms that do business in the EU—may

have limited the utility of black market account sales on MTurk. In short, while

third-party services like MTurk and Prolific offer a solution to recruiting large

numbers of participants for subjective evaluation, these services are themselves

complex and time-varying systems with parameters that must be carefully and

periodically tuned to the specific evaluation being performed.

• Challenge 2: Developing the evaluation | High-quality subjective evalua-

tion requires the evaluation design to adequately represent the underlying ex-

perimental hypothesis being tested, while being simple and easy-to-follow to

minimize participant confusion. This requires significant expertise in full-stack

web development and user experience design, as well as knowledge of the trade-

offs of common subjective evaluation designs such as A/B, ABX, Mean Opin-

ion Score (MOS), and MUltiple Stimuli with Hidden Reference and Anchor

(MUSHRA) [30] in order to select the correct design for the specific evaluation

being performed. It is rare for machine learning and audio researchers to have

sufficient background in these skills to quickly produce a high-quality subjective

evaluation system. Instead, one-off subjective evaluation systems of questionable

design are commonplace. Crowdsourcing platforms such as MTurk attempt to

provide templates for common tasks (e.g., sentiment analysis, toxicity detection,
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and image captioning). However, the support for audio tasks is insufficient, and

does not support, e.g., a prescreening listening test to verify that the participant

can hear the audio.

In my early work [74, 75, 78], I relied on closed-source subjective evaluation systems. In

my experience, every company doing generative machine learning research (and many

labs) spends considerable resources independently developing closed-source subjective

evaluation systems for evaluating both research and commercial products. In some cases,

these systems are mature enough that high-quality subjective evaluation becomes a “coin-

operated machine”: it is as easy to perform as objective evaluation (e.g., calling a Python

function) with the notable difference of incurring a direct financial cost. I found these

efficient subjective evaluation systems to be instrumental in quickly evaluating my speech

synthesis and speech editing research. As such, I developed and open-sourced my own

subjective evaluation system called Reproducible Subjective Evaluation (ReSEval) [79].

ReSEval (Figure 3.3) lets researchers launch A/B, ABX, Mean Opinion Score (MOS),

MUltiple Stimuli with Hidden Reference and Anchor (MUSHRA) tests, and more on au-

dio, image, text, or video data from a command-line interface or using one line of Python,

making it as easy to run as objective evaluation. ReSEval was accepted as a workshop

paper at the 2022 International Conference on Learning Representations (ICLR) [79].

I use ReSEval (v0.1.6) for all subjective evaluations performed in my dissertation. I

pay participants according to the minimum wage in Evanston, Illinois, US, which was

raised on January 1st, 2024 from $13.35 per hour to $14.00 per hour (USD). I use all

100 test utterances from VCTK described in Section 3.2 for all subjective evaluations. I

determine which utterances are seen by which participant via uniform random sampling

https://github.com/reseval/reseval


103

Figure 3.3. Reproducible subjective evaluation (ReSEval) system
flow | A researcher creates a subjective evaluation by providing a config-
uration file and a directory of evaluation files as input. ReSEval creates
a crowdsource task and recruits participants via, e.g., Amazon Mechani-
cal Turk (MTurk). Participants complete the task, producing evaluation
data for analysis. ReSEval analyzes the evaluation data and presents the
researcher with a statistical analysis. With ReSEval, the researcher does
not have to perform any web development. As well, aside from a one-time
acquisition of API keys, the researcher does not have to interact with any
third-party services (e.g., MTurk, Heroku, or Amazon Web Services). In-
stead, ReSEval performs all of the necessary interactions with third-party
services to configure and manage databases, servers, file storage, and crowd-
sourcing on behalf of the researcher.

without replacement. Further details of subjective evaluation designs corresponding to

specific evaluations are provided in their respective sections.
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Representation ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓ Subjective↑
Proposed 17.1 .055 .959 .109 .471 ± .046
Mel spectrogram 21.5 .061 .512 .041 .529 ± .046

Table 3.1. Speech reconstruction results | Objective and subjective
evaluation of speech reconstruction using Mel spectrograms (Section 1.1.2)
or my disentangled, interpretable representation (Chapter 2; Figure 1.2).
Objective evaluation metrics are defined in Section 3.3.1 and my subjective
evaluation is described in Sections 3.3.2 and 3.4. ↑ indicates that higher is
better and ↓ indicates that lower is better.

3.4. Speech reconstruction

In speech reconstruction, a speech recording is encoded in a speech representation—

such as a Mel spectrogram (Figure 1.1; bottom) or my proposed speech representation

(Chapter 2; Figure 1.2)—and then decoded via a speech synthesis system to reproduce

the original speech recording. While speech reconstruction is not itself a useful operation

(the input and output are—at best—the same), it is a standard method for evaluating

the accuracy and perceptual quality of speech representations.

I compare speech reconstruction using my proposed representation to Mel spectrogram

vocoding. While Mel spectrograms do not disentangle pronunciation from prosody or

voicing—and therefore cannot be used for corresponding speech editing tasks—vocoding

with HiFi-GAN is a common high-anchor for text-to-speech systems: comparable per-

ceptual reconstruction accuracy with Mel spectrogram vocoding indicates reconstruction

that often requires a trained ear and a suitable listening environment to distinguish. I

include speaker conditioning (Section 3.2.2), data augmentation (Section 3.2.1), and the

complex, multi-band discriminator [45] in our baseline Mel spectrogram model. This is

for fair comparison and because these techniques improve the baseline. I use objective

metrics described in Section 3.3.1.
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Figure 3.4. Noise floor reconstruction | Single-band A-weighted loud-
ness of original speech and speech reconstruction using my proposed speech
representation (Chapter 2). The majority of loudness reconstruction error
(Table 3.1) can be attributed to my proposed representation not recon-
structing the exact noise floor of the speech recording. Note that it is
straightforward to copy/paste the silent regions of the original audio into
the edited audio and apply crossfades to produce the exact noise floor.
figure-3-4-0016-000321.wav

For subjective evaluation, I recruit 35 participants to each perform 15 ABX compar-

isons of reconstruction accuracy. In an ABX comparison, a participant selects which of two

speech recordings (“A” or “B”) sounds more similar to a reference recording (“X”). I use

as reference recording the original audio and have participants select between correspond-

ing reconstructions using Mel spectrograms or my proposed representation (Chapter 2).

All participants passed the listening test and five participants left early, giving us 450

ABX comparisons.

Table 3.1 shows that participants rated our representation more similar to ground

truth audio in 212 of 450 ABX comparisons (47.1%). A two-sided Binomial test indicates

no significant preference among raters (p = 0.23); the perceptual reconstruction accuracy

of our representation is roughly as good as Mel spectrograms. Table 3.1 further shows that
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my representation improves pitch and periodicity reconstruction relative to Mel spectro-

grams. Note that my PPGs are computed from Mel spectrograms, which biases ∆PPG

to favor Mel vocoding. This is because both the PPG neural network and the speech

synthesizer neural network learn to utilize low-energy bins in the Mel spectrogram that

do not significantly contribute to auditory perception to overfit and reduce training loss.

Further, Mel spectrograms are in essence a fine-grained (frequency-dependent) represen-

tation of energy, while my proposed representation can only coarsely capture the noise

floor (i.e., the decibel level of the sum of all unwanted sounds in a signal); the primary

source of loudness error (∆dBA) is due to our model producing silence with a different

noise floor (Figure 3.4). This can further be seen by splitting the evaluation of ∆dBA

at a silence threshold of −60 dBA, such that ∆dBA+ evaluates loudness reconstruction

accuracy in frames t where both at > −60 and ât > −60 and ∆dBA− evaluates loud-

ness reconstruction accuracy in all other frames. My proposed representation produces

∆dBA− = 1.30 dBA and ∆dBA+ = 0.57 dBA, whereas Mel spectrogram reconstruc-

tion produces ∆dBA− = 0.63 dBA and ∆dBA+ = 0.40 dBA. Thus, the improvements

in loudness reconstruction of Mel spectrogram vocoding relative to my proposed repre-

sentation are primarily due to better reconstruction of low-energy time-frequency bins

that are largely irrelevant to human perception. Figure 3.5 overlays an example utter-

ance in my proposed representation with my representation inferred from reconstructed

speech to provide a complete depiction of the reconstruction accuracy using my proposed

representation.

In this chapter, I described my system for producing synthesized speech from my pro-

posed representation (Section 3.1) established a methodology for objective and subjective
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Figure 3.5. Speech reconstruction example | I (1) encode an example
speech utterance in my proposed representation (Chapter 2), (2) perform
speech synthesis, (3) encode the synthesized speech in my representation,
and (4) overlay the speech representation inferred from synthesized speech
on the input representation to demonstrate the reconstruction accuracy of
my speech representation.
Blue SPPGs (top) are inputs, red SPPGs are inferred from synthesized
speech, and violet indicates accurate reconstruction. For pitch, periodicity,
and A-weighted loudness, the features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-3-5-0108-000345-original.wav

figure-3-5-0108-000345-reconstructed.wav

evaluation of speech synthesis (Section 3.3) and demonstrated that my proposed repre-

sentation is capable of performing speech reconstruction with objective and subjective
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performance comparable to the widely-used Mel spectrogram (Section 3.4). However,

speech reconstruction is not useful it itself: at best, the output is the same as the original

audio. In the next chapter, I utilize my speech synthesis system and evaluation method-

ologies to showcase a variety of high-fidelity, state-of-the-art, and novel speech editing

capabilities afforded by my representation that are difficult or impossible to perform us-

ing a Mel spectrogram.
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CHAPTER 4

High-fidelity interpretable speech editing

Now that I have shown that my speech representation (Chapter 2) can be used as an

input representation to perform high-fidelity speech reconstruction (Chapter 3), it remains

to demonstrate that my speech synthesis system trained on my representation can be used

to perform interpretable and disentangled editing of speech attributes of interest. In this

chapter, I demonstrate that my speech editing system is capable of performing fine-grained

(i.e., frame-resolution) editing of pitch (Section 4.1), phoneme durations (Section 4.2),

the timbral correlates of volume (Section 4.3) and pronunciation (Section 4.7). I further

demonstrate global (i.e., applied to the entire speech recording) spectral balance editing

(Section 4.4) and speaker identity via both voice conversion (Section 4.6) and speaker

adaptation (Section 4.5). Finally, I perform ablations of key design decisions that I have

proposed throughout my dissertation (Section 4.8).

Editing the pitch contour of a speech recording requires specifying a target pitch for

each frame. Likewise, editing phoneme durations necessitates target phoneme durations,

editing loudness requires a target loudness contour, and editing the spectral balance re-

quires specifying a value for rf , the relative spectral energy augmentation parameter

described in Section 3.2.1. Therefore, to demonstrate editing of each of these parameters,

I must specify target values. In practice, many appropriate target values exist—so long

as the edits are perceptible and applied uniformly to all speech editing models being com-

pared. I perform pitch-shifting by editing the pitch inferred from original speech by ±600
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cents (i.e., one tritone), time-stretching by changing the total speech duration in seconds

by
√

2 or
√

2/2, loudness editing by ±10 dBA, and editing of relative formant energies

using rf =
√

2 and rf =
√

2/2. A pitch shift of ±600 is equivalent to multiplying the

frequency in Hz by
√

2 or
√

2/2. This decision of using
√

2 and
√

2/2 is mostly arbitrary.

One benefits of using these factors is that pitch-shifting by ±600 cents is equivalent to

pitch-shifting by a musical tritone. Speech formants (Figure 1.1) place high amounts of

energy at integer multiples of F0 in Hz (i.e., 1200 cents, 2400 cents, . . . ). Pitch-shifting by

a tritone maximally removes any possible bias induced by overlapping formant energies

before and after shifting. However, I found that the corresponding loudness edit of ±5

dBA was only subtly perceptible, and instead use ±10 dBA. On the companion website1

of my corresponding paper on speech editing [71], I demonstrate editing pitch, duration,

loudness, and spectral balance using a range of values.

4.1. Editing pitch

I demonstrate the disentanglement of pitch by performing pitch-shifting using my pro-

posed speech editing system and performing objective and subjective evaluation. For both

objective and subjective evaluation, I use pitch-shifting by ±600 cents (i.e., one tritone)

while keeping all other features the same. I use both TD-PSOLA [80] and WORLD [69]

as baseline pitch-shifting methods. Despite being over thirty years old, TD-PSOLA rep-

resents the state-of-the-art in pitch-shifting accuracy, with only my prior work [73] and

Wang et al. [115] demonstrating comparable pitch-shifting accuracy and subjective qual-

ity. I use the objective metrics described in Section 3.3.1. I also perform a subjective

evaluation, in which participants listen to speech recordings from each condition and rank

1Temporary link during review period: https://master.d17fxebptfqpit.amplifyapp.com/

https://www.maxrmorrison.com/sites/promonet/
https://master.d17fxebptfqpit.amplifyapp.com/
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Figure 4.1. Subjective evaluation interface for pitch-shifting and
time-stretching | Participants recruited on Amazon Mechanical Turk lis-
ten to 15 sets of three audio files, where each set consists of the same edit
(a pitch-shift or time-stretch) applied to an original audio recording using
three methods: (1) my proposed method for pitch-shifting (Section 4.1) or
time-stretching (Section 4.2) as well as DSP baselines (2) TD-PSOLA [80]
and (3) WORLD [69].

their relative quality from 0 (worst) to 100 (best) using a slider (Figure 4.1). Note that

this is strictly a test of perceptual quality and not accuracy; both my baseline and pro-

posed methods for pitch-shifting exhibit sufficient objective accuracy to be likely within

the just noticeable difference (JND) of human pitch discrimination of speech signals [37].
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I recruit 35 participants. Five participants failed the prescreening listening test for the

pitch-shifting and one participant left early, so I received 435 three-way comparisons.

Method ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓ Subjective↑
Proposed 22.5 .090 2.17 .137 68.9
TD-PSOLA [80] 21.6 .115 1.66 .109 61.1 ± 3.13
WORLD [69] 17.7 .113 1.76 .286 45.0 ± 3.25

Table 4.1. Pitch-shifting results | Results of pitch-shifting by ±600 cents
using my proposed system and two DSP baselines. Objective metrics are
defined in Section 3.3.1). ↑ indicates that higher is better and ↓ indicates
that lower is better.

Table 4.1 indicates that pitch-shifting using my proposed speech editing system demon-

strates statistically significant improvements in perceptual quality over both TD-PSOLA [80]

(p = 5.41× 10−6) and WORLD [69] (p = 3.56× 10−38) using Wilcoxon signed-rank tests.

Note that as periodicity error (∆ϕ) improves, the number of voiced frames increases.

However, these additional voiced frames have relatively low periodicity. This makes ac-

curate pitch estimation (∆¢) more difficult. Thus, pitch and periodicity error must be

jointly evaluated, and no single system stands out as “best” in terms of pitch and period-

icity; however, my proposed method is clearly superior in perceptual quality. Figure 4.2

overlays an example utterance in my proposed representation where pitch is edited −600

cents (left) or +600 cents (right) with my representation inferred from the corresponding

synthesized speech. Focus on the yellow boxes in this figure, which contain the desired

pitch contours for pitch-shifting down (left) and up (right) overlaid with corresponding

pitch contours inferred from speech that was synthesized using the desired pitch contours.

Within voiced regions (i.e., when the periodicity exceeds 0.1625), more overlap between
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Figure 4.2. Pitch-shifting example | I (1) encode an example speech ut-
terance in my proposed representation (Chapter 2), (2) modify the pitch
by −600 (left) and +600 (right) cents, (3) perform speech synthesis using
the modified pitch contours to produce pitch-shifted speech, (4) encode the
pitch-shifted speech in my representation, and (5) overlay the speech rep-
resentation inferred from pitch-shifted speech on the input representation
(after the ±600 cent shift has been applied) to demonstrate pitch disentan-
glement. N.B., the pitch range (i.e., the y-axis) varies between the
left and right figure.
Blue SPPGs (top) are inputs, red SPPGs are inferred from pitch-shifted
speech, and violet indicates accurate reconstruction. For pitch, periodicity,
and A-weighted loudness, the features inferred from pitch-shifted speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-2-0108-000430-original.wav

figure-4-2-0108-000430-(-600¢).wav
figure-4-2-0108-000430-(+600¢).wav

pitch contours indicates a more successful edit. As you can see, the pitch contours are

strongly overlapped.
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4.2. Editing duration

I demonstrate the ability to perform variable-rate time-stretching using my proposed

speech editing system. Variable-rate time-stretching can be accomplished using my pro-

posed speech editing system by performing interpolation on my speech representation

(Chapter 2) and then using my speech synthesizer (Section 3.1) to synthesize speech from

my interpolated speech representation. Pitch (in base-two log-Hz), periodicity, and loud-

ness (in dBA) are all amenable to linear interpolation. PPGs are constrained to be a

valid, |P |-dimensional categorical distribution (i.e., non-negative and sums to one). This

is equivalent to constraining PPG frames to be points on the |P |-dimensional simplex.

Performing linear interpolation between two points on a simplex (i.e., non-negative and

sums to one) also produces a point on the simplex. Having empirically compared both

linear interpolation and SLERP but not previously worked out this equivalence, my cur-

rent system utilizes spherical linear interpolation (SLERP) [98]. SLERP is a standard

method for interpolation on the surface of the hypersphere, which intersects the simplex

when the PPG places all probability on one phoneme. In practice, objective evaluation

(Section 3.3.1) on my validation data using either interpolation method for interpolating

PPGs produces equivalent results during time-stretching. This indicates that the network

learns to compensate for this (linear) transformation during training due to the interpola-

tion from the sample rate used during PPG inference (16 kHz; Section 2.1) and the sample

rate used for speech synthesis (22.05 kHz; Section 3.1). I use SLERP when interpolating

PPGs (and SPPGs) and linear interpolation for pitch (in base-two log-Hz), periodicity,

and loudness.
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Human speakers change speaking rate in a phoneme-dependent manner [46]. This

corresponds to variable-rate time-stretching. I perform a coarse generalization of this

phoneme-dependent behavior using two rates: one (i.e., 1.0) for unvoiced phonemes, and

another (d) for all other frames. I perform time-stretching to increase or decrease the

total duration of speech by a factor of
√

2, such that d =
√

2
(

1 − |U|
T

)
to increase the

total duration and d =
√
2
2

(
1 − |U|

T

)
to decrease the total duration. U is the set of frames

in which the sum of unvoiced phoneme probabilities in the SPPG exceeds 50%. Note

that one could also determine the set of voiced and unvoiced frames by thresholding the

entropy-based periodicity (Section 2.3.1). However, periodicity is more strongly influ-

enced by per-frame variations in background noise and hum, making it more descriptive

of the overall audio signal—as opposed to just the salient speech content. In contrast,

PPGs are trained to detect the spoken phoneme regardless of background noise. This pro-

duces clearly improved alignment with the voiced and unvoiced phonemes, detecting entire

voiced phonemes missed by the periodicity-based voiced/unvoiced method (Figure 4.3).

I evaluate variable-rate time-stretching using the objective metrics described in Sec-

tion 3.3.1. I also perform a subjective evaluation using the same design and baseline

methods as was used for evaluating pitch-shifting (Section 4.1). No participants failed my

listening test or left early, so I received perceptual results from 525 three-way comparisons.

Method ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓ Subjective↑
Proposed 20.4 .066 1.29 .195 64.0
TD-PSOLA [80] 22.0 .062 1.65 .189 63.3 ± 1.71
WORLD [69] 18.2 .103 4.48 .473 46.5 ± 2.20

Table 4.2. Time-stretching results | Objective and subjective results of
time-stretching by factors of

√
2 and

√
2/2. ↑ indicates that higher is better

and ↓ indicates that lower is better.
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Figure 4.3. Comparing voiced/unvoiced decisions from periodic-
ity and PPGs | (top) SPPG (Section 2.1) with voiced phonemes in
green and unvoiced phonemes in red. (middle) Entropy-based period-
icity (Section 2.3) with voiced frames in green, unvoiced frames in red,
and voicing threshold α in orange. (bottom) Voicing decisions derived
from the SPPG (blue) and periodicity (orange). The SPPG framewise
voiced/unvoiced decisions exhibit clearly improved alignment with voiced
and unvoiced phonemes.
figure-4-3-0083-000365.wav

Table 4.2 demonstrates that my proposed system performs variable-rate time-stretching

with perceptual quality at least as good as high-fidelity DSP-based baselines. A Wilcoxon

signed-rank test between my proposed system and DSP-based method TD-PSOLA indi-

cates an insignificant preference for my system (p = 0.45). Further analysis indicates a
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small, insignificant preference for my method relative to baselines when decreasing the

duration (increasing speed; p = 0.35) relative to increasing the duration (p = 0.87). Ta-

ble 4.2 shows that my system achieves competitive values for all objective metrics and

top performance for loudness reconstruction. Figure 4.4 overlays an example utterance in

my proposed representation that has been interpolated to be slowed down (left) or sped

up (right) by a total factor of
√

2 with my representation inferred from the corresponding

synthesized speech. Focus on the difference in duration of the left and right plots, as

indicated by the x-axis at the bottom. Successful time-stretching should produce left and

right plots that look as close as possible (except the difference in duration) and overlap

precisely with the corresponding interpolated representation used as input. Clearly, the

left and right plots look similar and exhibit strong overlap with the input representation.

The largest difference is small deviations in periodicity that differentiate the voiced frica-

tive “z” and the corresponding unvoiced fricative “s”. My prior work indicates that this

is a known drawback of non-autoregressive speech synthesizers with relatively small re-

ceptive fields [75]. Figure 4.4 also indicates that there is a small amount of misalignment

in the SPPGs. I hypothesize this may be due to learning some properties of speaking rate

variation from the volume data augmentation, which applies time-stretching to the entire

recording (instead of only specific phonemes) at a constant rate.

4.3. Editing the timbral correlates of volume

Human speech possesses different timbral qualities correlated and associated with

speaking louder or quieter. At the extremes, quiet speech is associated with whispering—

wherein vocal fold engagement is not sufficient to produce voiced speech—and loud speech
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Figure 4.4. Time-stretching example | I (1) encode an example speech
utterance in my proposed representation (Chapter 2), (2) interpolate the
voiced and silent frames of my proposed representation to increase (left) or
decrease (right) the total duration by a factor of

√
2, (3) perform speech

synthesis using the interpolated representation to produce time-stretched
speech, (4) encode the time-stretched speech in my representation, and (5)
overlay the speech representation inferred from time-stretched speech on the
input representation (after interpolation) to demonstrate the preservation
of speech features during time-stretching. N.B., the duration (i.e., the
x-axis) varies between the left and right figure.
Blue SPPGs (top) are inputs, red SPPGs are inferred from time-stretched
speech, and violet indicates accurate reconstruction. For pitch, periodicity,
and A-weighted loudness, the features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-4-0082-000568-original.wav

figure-4-4-0082-000568-(0.71x).wav

figure-4-4-0082-000568-(1.41x).wav
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with shouting. Between these extremes, variations in volume of airflow across the glottis as

well as variation in vocal fold tension produce differences in dynamic range (e.g., sharper

or flatter signal transients at the beginnings of plosives) as well as differences in high-

frequency content. This effect can also be observed in any musical instrument: a guitar

string being plucked harder or a woodwind or brass instrument with more input airflow

will have a “brighter” timbre, consisting of relatively more high-frequency content. Audio

playback devices and volume editing via standard DSP-based methods decorrelate volume

from the timbral correlates of volume: whispers can be made arbitrarily large and shouts

arbitrarily quiet.

Standard audio effects plug-ins (e.g., multi-band compressors) can theoretically be

used to manually model the effect of varying vocal engagement. However, the correct

settings are dependent on the speaker and F0, meaning that one would also have to

perform fine-grained manual automation. This is a highly labor-intensive editing workflow

not typically performed in practice. Given the option, speech content creators would be

more likely to have the speaker rerecord the audio. In professional studios, this requires

additional cost and time. Further, generated speech content cannot be rerecorded in this

manner, and regeneration may cause changes throughout the speech recording as opposed

to a precise, fine-grained edit of a few frames (e.g., one word) of the speech recording.

My research is the first to demonstrate fine-grained disentanglement and control of

volume and the timbral correlates of volume, where volume editing is performed using

standard DSP-based gain scaling (as is used during data augmentation of volume in

Section 3.2.1) and jointly editing volume and the timbral correlates of volume is performed

by editing the frame-resolution A-weighted loudness (Section 2.4). My system can also
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perform volume editing independent of the timbral correlates of volume by editing the

gain scaling augmentation ratio rl; however, I find this to be less accurate and without

advantage over standard DSP-based volume editing.

I perform editing of the timbral correlates of volume using my proposed system by

editing the single-band A-weighted loudness contour (i.e., the average over all bands of the

multi-band A-weighted loudness), applying the edit uniformly to all bands of the multi-

band loudness, and then using my proposed speech synthesizer (Section 3.1) to synthesize

speech with the desired edit. I perform both subjective and objective evaluation. I use the

objective metrics described in Section 3.3.1. For subjective evaluation, I perform an A/B

subjective evaluation between original speech recordings and corresponding recordings

synthesized single-band A-weighted loudness contours modified to be 10 dBA louder or

quieter throughout. I then volume match the synthesized speech with the original speech

at the frame resolution using DSP-based gain scaling between the original A-weighted

loudness and the A-weighted loudness inferred from synthesized speech. This is the same

DSP-based gain scaling used during data augmentation (Section 3.2.1). This produces

pairs of original and perceptual-loudness-edited speech recordings with equal A-weighted

loudness. I ask 35 participants to select which of two speech recordings “sounds like the

speaker is speaking louder”. Six participants failed the prescreening listening test, so I

receive 435 perceptual A/B comparisons.

Table 4.3 indicates that jointly editing the volume and the timbral correlates of vol-

ume using my proposed system produces objective metrics (Section 3.3.1) comparable

to performing speech reconstruction without edits (Section 3.4). In 290 subjective A/B

comparisons (66.7 ± 4.6%), participants’ selection matches my intended modification of
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Representation ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓ Subjective↑
Proposed (reconstruction) 17.1 .055 .959 .109 33.3 ± 4.6%
Proposed (±10 dBA) 17.9 .065 1.91 .141 66.7 ± 4.6%

Table 4.3. Results for editing volume and timbral correlates of vol-
ume | Objective results of jointly editing volume and its timbral correlates,
and subjective evaluation of disentangled editing of the timbral correlates
of volume by first performing joint editing and then DSP-based A-weighted
loudness matching at the frame resolution. Reconstruction objective met-
rics included to highlight the accuracy of editing relative to reconstruction.
Objective evaluation metrics are defined in Section 3.3.1. ↑ indicates that
higher is better and ↓ indicates that lower is better.

the timbral correlates of volume on volume-matched audio (p = 3.20× 10−12). Figure 4.5

plots the frequency spectra of reconstruction and volume-matched editing of the timbral

correlates of volume to demonstrate that my proposed editing method has the expected

behavior of performing a corresponding increase or decrease in high-frequency speech con-

tent. Figure 4.6 overlays an example utterance in my proposed representation where the

single-band A-weighted loudness has been modified by ±10 dBA with my representation

inferred from the corresponding synthesized speech. Focus on the yellow boxes in this fig-

ure, which contain the desired A-weighted loudness contours for jointly decreasing (left)

and increasing (right) the volume and its timbral correlates, overlaid with corresponding

A-weighted loudness contours inferred from speech that was synthesized using the desired

loudness contours. More overlap between A-weighted loudness contours indicates a more

successful edit. As you can see, the A-weighted loudness contours are strongly overlapped.

Noise floor reconstruction in the right plot is not perfectly overlapping, but—as discussed

in Section 3.4)—this is a nearly imperceptible difference. Note that when the change

in spectral balance is large enough, the inferred phoneme in the SPPG can also change.
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Figure 4.5. Frequency spectra of speech reconstruction and
volume-matched editing of timbral correlates of volume | I modify
the single-band A-weighted loudness (Section 2.4) of an unedited speech
recording by 0 (i.e., reconstruction; blue), −10 (orange), and +10 dBA
(green) using my proposed method for jointly editing volume and its tim-
bral correlates. I then perform frame-resolution A-weighted loudness match-
ing using DSP-based gain scaling (Section 3.2.1) with the original audio.
This produces reconstructed and perceptual-loudness-edited speech record-
ings with equal volume. I plot the frequency spectra of speech reconstruc-
tion as well as volume-matched editing of the timbral correlates of volume to
show that my proposed method captures the expected behavior of perceptu-
ally louder speech having relatively more high-frequency content. In voice
quality literature, this increase in the relative amount of high-frequency
content has been found to explain over 20% of intraspeaker acoustic vari-
ations [54]. Likewise, most musical instruments produce relatively more
high frequency content when played with more input energy (e.g., hitting
a drum harder or bowing a violin string faster or with more pressure). My
proposed system learns the timbral correlates of volume within a speech
dataset and enables disentangled control.
figure-4-5-0073-000047-original.wav

figure-4-5-0073-000047-reconstruction.wav

figure-4-5-0073-000047-(-10dBA).wav

figure-4-5-0073-000047-(+10dBA).wav

This is most evident in Figure 4.6 in the phonemes /aa/, /ao/, and /er/, where /aa/ has

relatively more energy in high-frequency harmonics and /er/ has relatively less.
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Figure 4.6. Example of jointly editing volume and the timbral cor-
relates of volume | I (1) encode a speech utterance in my proposed rep-
resentation (Chapter 2), (2) modify the single-band A-weighted loudness
by −10 (left) and +10 (right) dBA, (3) perform speech synthesis using
modified A-weighted loudness to produce speech in which volume and its
timbral correlates are jointly edited, (4) encode the synthesized speech in
my representation, and (5) overlay the speech representation inferred from
synthesized speech on the input representation (after ±10 dBA edits have
been applied to the A-weighted loudness) to demonstrate accurate recon-
struction of input features during loudness and volume editing.
Blue SPPGs (top) are inputs, red SPPGs are inferred from synthesized
speech, and violet indicates accurate reconstruction. For pitch, periodicity,
and A-weighted loudness, the features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
N.B., the loudness range (i.e., the y-axis) varies between the left
and right figure.
figure-4-6-0037-000659-original.wav

figure-4-6-0037-000659-(-10dBA).wav

figure-4-6-0037-000659-(+10dBA).wav
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4.4. Editing spectral balance

I demonstrate that my proposed resampling-based data augmentation (Section 3.2.1)

permits disentangled control over the relative energy of high- and low-frequencies. I

perform speech synthesis using two values (rf =
√

2 and rf =
√

2/2) for the relative

spectral balance parameter described in Section 3.2.1. I perform estimation of F0 and its

harmonics and measure the displacement of F0 reconstruction and its first two harmonics

H1, H2 in cents in voiced regions. I also measure the change in spectral centroid between

ground-truth and edited audio in voiced regions. Low displacement error with a change

in spectral centroid in the direction of rf indicates disentangled control of the spectral

balance.

Qualitatively, increases to rf produces a similar effect as, e.g., Alvin from Alvin and the

Chipmunks, but without requiring voice actors to sing/speak unnaturally slowly—as was

done in the original recording process. A closed-source effect similar to this is available

in some commercial audio plug-ins, and has been used in, e.g., a popular hip-hop song

“Swimming Pools” by Kendrick Lamar. Note that the lyrics of this song contain explicit

content. In both cases, the efficacy of the use of this type of editing is highly subjective—

some listeners may consider the effect appropriate for the context and some may not. For

this reason, I do not perform a subjective evaluation of spectral balance editing. Further

refinement and evaluation of my proposed method—as well as including a mechanism

for fine-grained, framewise edits—may produce useful facilities for voice quality editing,

which is associated with semantic attributes such as speaker emotion [24] and performed

gender [38].



125

My experiences so far in using existing formant estimation methods such as peak-

picking [11], Viterbi decoding [42], or neural methods [20] have found them to be too

noisy to be considered for evaluating the accuracy of harmonic or formant reconstruction.

As well, no prior work has combined the efficacies of neural networks and Viterbi-based

formant estimation. I propose using my pitch representation (Section 2.2) as F0 and

performing Viterbi decoding on a high-resolution log magnitude spectrogram in bands

and its harmonics are restricted to bands (i+w)×F0 < Hi < (i+1/w)×F0 and w = 4/5

is tuned by visual inspection on training data to prevent octave errors. Note that after

F0 inference, all harmonics can be decoded in parallel. My high-bandwidth batched

Viterbi decoding implementation (Section 2.2.4) is well-suited for performing decoding of

all harmonics in parallel.

My proposed harmonic estimation method (Figure 1.1; bottom) reconstructs F0 with

an average error of 18.73 cents and H1 and H2 with an average error of 5.60 cents. The

change in framewise spectral centroid has Pearson correlation of .853 with rf , indicating

strong, disentangled control of spectral balance. This method achieves lower pitch and

harmonic reconstruction errors relative to other methods I tried that decode from LPC

coefficients or a pitch posteriorgram. However, I have not performed extensive evaluation

of my estimation method relative to prior methods—or thorough hyperparameter searches

to further improve my proposed method. Therefore, I refrain from calling my harmonic

estimation method state-of-the-art at this time. However, my method does demonstrate

impressive visual agreement with harmonics shown on a spectrogram (Figure 1.1) and is

sufficient to demonstrate that my proposed method maintains harmonic positions while

varying the spectral balance.
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Figure 4.7 overlays an example utterance in my proposed representation with my

representation inferred from the corresponding speech synthesized using relative spectral

balance parameters rf that have been modified from the default value of rf = 1.0 to

rf =
√

2/2 (left) and rf =
√

2 (right). Focus on the SPPG, which demonstrates a clear

change before and after editing. This effect is more clearly visualized in Figure 4.8, in

which only the salient differences between SPPGs are provided. Certain phoneme pairs

(e.g., “t” and “d”, or “aa” and “ao”) can be distinguished from one another by their

relative amounts of high-frequency energy. Thus, spectral balance editing with rf < 1

(left) should produce corresponding low-frequency phonemes, and rf > 1 (right) should

produce corresponding high-frequency phonemes. Figure 4.8 clearly demonstrates that

my system exhibits this expected behavior. Note as well that there is a small amount of

change in the A-weighted loudness in Figure 4.7. This is because the input A-weighted

loudness corresponds to A-weighting of the ground truth frequency distribution during

training. This indicates that perhaps an interpolation of the original A-weighted loudness

should be used during training—as opposed to the A-weighted loudness of data augmented

using my resampling augmentation. However, this can be easily compensated for using

DSP-based gain scaling to perform A-weighted volume matching, as is used in my gain

scaling data augmentation (Section 3.2.1).

4.5. Speaker adaptation

Speech content creators require speech editing systems that can be utilized with an

arbitrary speaker. The process of fine-tuning a speech synthesis system on training data

from a single speaker not seen during training to enable synthesis in the voice of that
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Figure 4.7. Spectral balance editing example | I (1) encode a speech
utterance in my proposed representation (Chapter 2), (2) perform speech
synthesis using the encoded representation with resampling augmentation
factors (Section 3.2.1) of rf =

√
2/2 (left) and rf =

√
2 (right), (3) encode

the synthesized speech in my representation, and (4) overlay my speech
representation inferred from synthesized speech on the input representation
to demonstrate accurate reconstruction while editing the spectral balance.
My editing method produces corresponding changes in vowels in the inferred
SPPG, such as predicting “ao” instead of “aa” (right) and “ay” instead of
“eh” (left). To further demonstrate this behavior, Figure 4.8 zooms in on
just the phonemes that were changed in the SPPG.
Blue SPPGs (top) are inferred from a recording of the source speaker, red
SPPGs are inferred from speech synthesized with modified spectral balance,
and violet indicates accurate reconstruction. For pitch, periodicity, and A-
weighted loudness, features inferred from synthesized speech are shown in
black, while input features are green when the inferred feature is within
an error threshold and red when outside that threshold. I use a threshold
of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-7-0047-000757-original.wav

figure-4-7-0047-000757-(r f=0.71).wav

figure-4-7-0047-000757-(r f=1.41).wav
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Figure 4.8. Spectral balance editing produces corresponding
changes in phoneme probabilities | I visualize all frames in which the
absolute difference between SPPGs inferred from ground truth audio and
audio with my proposed spectral balance editing exceeds 35%, using the
same audio as in Figure 4.7. Blue indicates where SPPGs inferred from
original audio are assigned at least 35% more probability than SPPGs in-
ferred from edited audio. Red indicates where SPPGs inferred from audio
with spectral balance editing are assigned at least 35% more probability
than SPPGs inferred from ground truth audio. On the left (rf = 0.71), we
see that “er” is replaced by “ow” (1.4 seconds), “aa” is replaced with “ao”
(1.7 seconds), “eh” is replaced with “w” (2.8 seconds), and “t” is replaced
with “d” (3.4 seconds). These replacements all correspond with less energy
in the high-frequencies. On the right (rf = 1.41), we see that “dh” is re-
placed with “th” (1.3 seconds), “z” is replaced with “s” (2.1 seconds), “l” is
replaced with “ah” (2.7 seconds). These replacements all correspond with
more energy in high frequencies. Interestingly, “s” (an unvoiced fricative)
replaces “z” (the corresponding voiced fricative), but periodicity remains
the same (Figure 4.7). This can be explained by the fact that English pro-
nunciations of, e.g., pluralizations, are commonly “z”, but are labeled as
“s” in the lexically-derived PPG training data (Section 2.1.3.1).

speaker is called speaker adaptation. In this section, I demonstrate that my pro-

posed speech editing system is capable of performing speaker adaptation. I

note that this is simply a proof of concept to demonstrate this useful capability,

and does not reflect the state-of-the-art practices in speaker adaptation. Very

recent systems demonstrate the ability to completely forego speaker adaptation in place

of high-fidelity discrete speaker embeddings [41] or few-shot learning [33, 49]. In future

work, I aim to use such a method in combination with my proposed speech representation
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Dataset ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓
VCTK (multispeaker) [119] 19.7 .068 1.48 .144
DAPS (adaptation) [82] 26.7 .080 1.56 .197

Table 4.4. Objective evaluation of speaker adaptation | Speech edit-
ing accuracy of fine-tuning for 10,000 steps on 10 speakers (5 male; 5 fe-
male) speakers from the DAPS [82] dataset compared to multispeaker per-
formance of the base model on held-out data from speaker seen during
training. Reported results are averages over pitch-shifting (by ±600 cents),
time-stretching (by factors

√
2 and

√
2/2), loudness edits (by ±5 dBA), and

reconstruction. ↑ indicates that higher is better and ↓ indicates that lower
is better.

(Chapter 2) to further improve speech editing accuracy and fidelity while omitting the

need for speaker adaptation.

I perform speaker adaptation on the “clean” partition of the DAPS dataset.2 I select

five male and five female test speakers. I select ten utterances from each test speaker

for a total of 100 test utterances. I require all test utterances be between four and ten

seconds in length. During adaptation training and synthesis, I set the speaker index to

zero and train only on speech recordings from a target speaker (and data-augmented vari-

ations 3.2.1) for 10,000 steps. I report the average objective metrics (Section 3.3.1) over a

set of modifications: pitch-shifting (Section 4.1), time-stretching (Section 4.2), editing the

timbral correlates of volume (Section 4.3), and reconstruction (Section 3.4). Note that

this set of modifications does not fully capture all intraspeaker acoustic variability (e.g., it

2Attentive readers may note that speaker adaptation on a different dataset induces a confounding vari-
able: the relative amount of noise in each dataset. My prior work on speech vocoding from Mel spectro-
grams [75] demonstrates that a vocoder without speaker conditioning trained on only VCTK produces
equivalent or superior performance on DAPS relative to VCTK without any training or fine-tuning using
DAPS. This is because the “clean” partition of DAPS that I use contains less noise than VCTK. The
alternative of withholding speakers from VCTK for adaptation would reduce training data and negatively
impact all of my other results in this dissertation. As mentioned at the start of Section 4.5, I am simply
showing a proof-of-concept that my system can generalize to new speakers—an important consideration
for real-world users.
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does not take into account variations in formant position and energy [54]). However, ex-

isting alternatives for measuring speaker similarity within the speech synthesis literature

are too sensitive to noise floor (i.e., speaker and noise are entangled) and any out-of-

distribution prosody (e.g., pitch-shifting). This is further discussed in Section 3.3.1).

Table 4.4 demonstrates that fine-tuning on individual speaker from DAPS does not yet

reproduce the objective performance of multispeaker training on VCTK. However, exist-

ing research in speaker adaptation proposes methods that would likely address this [103]

performance gap.

4.6. Voice conversion

The efficacy of representations similar to my proposed representation for voice con-

version is well-studied [125, 115]; voice conversion is the task that brought renewed

attention and interest to PPGs after their original utilization in query-by-example for

speech databases. As well, the current state-of-the-art in voice conversion tends to rely on

highly entangled discrete self-supervised methods trained on tens of thousands of hours of

speech recordings [33, 49]. It is likely that such methods can be used in conjunction with

my proposed representation; for example, converting between a discrete, self-supervised

representation and my proposed representation (Section 5.1.1) or jointly learning resid-

ual time-varying features (Section 5.1.5). I leave these directions as future work. For

now, I show examples of utilizing my proposed speech editing system to convert between

male and female speakers to demonstrate a proof-of-concept that—as with all prior voice

conversion methods using some variant of PPGs and acoustic features [125]—my speech

editing system is capable of any-to-many voice conversion, wherein a speech recording of
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an arbitrary speaker can be coverted to speech with the same (or similar) prosody and

pronunciation but in the voice of a speaker utilized during speech synthesis training (Sec-

tion 3.1). In the next section, I demonstrate that my system is also capable of speaker

adaptation, which allows a pretrained speech synthesizer to be fine-tuned to synthesize

speech in a new voice. Speaker adaptation combined with any-to-many voice conversion

produces any-to-any voice conversion, in which the prosody and pronunciation of any

input speech can be transferred to any target speaker. Figure 4.9 demonstrates many-to-

many voice conversion, wherein a held-out speech recording from a speaker utilized during

training is encoded in my proposed representation and used as input to synthesize speech

in the voice of another speaker utilized during training. I modify the using the mean and

standard deviation of the source and target speakers to ensure that the pitch used as input

is (with high likelihood) within the distribution of the target speaker. I provide examples

of converting from a male to a female voice (left) and vice versa (right). Successful

voice conversion should produce maximal overlap between all features. This is true for

all features except periodicity, which does deviate slightly. This is due to entanglement

between speaker identity and background noise: if a certain speaker recorded in a noisier

environment, the average periodicity for that speaker will be lower. Prior work [29] ad-

dresses this by utilizing a data augmentation method similar to my general augmentation

framework (Section 3.2.1), but specifically for adding parameterized noise to the data to

reduce the mutual information between speaker and noise. This also provides a global

control over the amount of noise in the generated speech.

Figure 4.11 demonstrates any-to-many voice conversion, in which a speech utterance

spoken by my co-author is used to perform voice conversion in the voice of a speaker
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Figure 4.9. Voice conversion example | I (1) encode speech utterances
from a male (left) and a female (right) source speaker in my representa-
tion (Chapter 2), (2) shift the pitch by the difference of the mean base-two
log-F0 in voiced regions between the source speaker and a target speaker of
the opposite gender, (3) perform speech synthesis using the target speaker
index and the source speaker representation (with mean-corrected pitch)
to synthesize the source speech content using the speaker embedding as-
sociated with the target speaker, (4) encode the synthesized speech in my
representation, and (5) overlay my representation inferred from synthesized
speech on the input representation to demonstrate accurate reconstruction
during voice conversion.
Blue SPPGs (top) are inferred from a recording of the source speaker,
red SPPGs are inferred from speech synthesized in the voice of the target
speaker, and violet indicates accurate reconstruction. For pitch, periodic-
ity, and A-weighted loudness, features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-9-0073-000053-0082-000741-*.wav3

figure-4-9-0108-000684-0032-000686-*.wav
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utilized during training as well as jointly performing voice conversion with novel speech

editing capabilities of fine-grained phoneme interpolation (middle) or manual phoneme

editing (right). I further discuss these pronunciation editing capabilities in Section 4.7.

My system is also capable of reconstructing or transferring some aspects of voice

quality (VQ), such as breathy or creaky voice. My representation was not designed with

these aspects in mind; future work may refine my representation for VQ control. However,

the information extracted via my representation is sufficient to inform the neural vocoder

of VQ attributes. Figure 4.10 provides two examples: a man yawning (i.e., breathy voice;

left) and a woman sustaining an /ah/ with and without vocal fry (right). The example

on the right also indicates that a sustained 50 Hz hum in the training dataset causes

sustained pitches to have an increased probability of silence.

4.7. Editing pronunciation

While prior works have demonstrated that PPGs enable conversion between accents [124],

my work is the first to demonstrate that interpretable PPGs permit interpretable, fine-

grained user control of speech pronunciation. Prior to my work, no previous speech editing

system of any kind had demonstrated any type of fine-grained pronunciation control. In

Figure 4.11, I visualize my proposed speech representation before and after performing

voice conversion with my proposed speech editing system (left), as well as jointly per-

forming voice conversion and phoneme interpolation (center) or manual phoneme editing

(right). I use spherical linear interpolation (SLERP) [98] for interpolating PPGs. As

described in Section 2.1.4, I use as pronunciation reconstruction error the JS divergence

3Includes the source utterance, an example target speaker utterance, and voice conversion results using
my proposed system.



134

aa
ae
ah
ao
ay
eh
er
hh
ow

r
<silent>

Sparse phonetic posteriorgram (SPPG)

100
200
300

Viterbi-decoded pitch (Hz)

0.00
0.25
0.50
0.75

Entropy-based periodicity

0 1 2 3 4 5 6 7
Time (seconds)

65
45
25

A-weighted loudness (dBA)

aa
ah
ao
eh
er
ey
ih
iy
l

m
n

ng
ow

r
v
w
y

<silent>

Sparse phonetic posteriorgram (SPPG)

50
100
150
200

Viterbi-decoded pitch (Hz)

0.00
0.25
0.50
0.75

Entropy-based periodicity

0 1 2 3 4 5 6 7 8 9
Time (seconds)

75
55
35

A-weighted loudness (dBA)

Figure 4.10. Voice quality conversion example | I (1) encode speech ut-
terances from a male yawning (left) and a female sustaining an /ah/ sound
with and without vocal fry (right) in my representation (Chapter 2), (2)
perform speech synthesis using the speaker embedding associated with a
target speaker seen during training, (4) encode the synthesized speech in
my representation, and (5) overlay my representation inferred from synthe-
sized speech on the input representation.
Blue SPPGs (top) are inferred from a recording of the source speaker,
red SPPGs are inferred from speech synthesized in the voice of the target
speaker, and violet indicates accurate reconstruction. For pitch, periodic-
ity, and A-weighted loudness, features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-10-0032-000780-*.wav

figure-4-10-0013-000531-*.wav

between the input, interpolated PPG and the corresponding PPG inferred from the gen-

erated audio (Figure 4.11; top).
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Figure 4.11. Pronunciation interpolation and distance | Examples
of using my proposed speech representation (Chapter 2) for (left) voice
conversion, (center) pronunciation interpolation, and (right) manual
phoneme editing. (top) I visualize overlapping PPGs of a recording of
the word “tomato” (blue) and inferred from the synthesized speech (red).
For readability, phoneme rows in the PPGs with maximum probability
< 10% are omitted. The accurate reconstruction of PPGs (magenta) indi-
cates preservation of (potentially edited) phonetic content in the generated
speech. In the center, the input (blue) PPG is interpolated only within
the (gray) edit region to be halfway (i.e., 50%) between the /eh/ in the
left PPG and the /aa/ in the right PPG using SLERP [98]. Note that
the reconstruction of interpolating “ey” (left) and “aa” (right) is “ae”
or “eh” (center). This is consistent with interpolating vowels in formant
space (F1, F2 - F1) [47] and indicates that one pronunciation can be rep-
resented more than one way in a PPG. (bottom) Pronunciation distances
between synthesized speech and the original audio. My proposed distance
(Section 2.1.4) is more robust to resynthesis artifacts and accurately cap-
tures pronunciation interpolation without a transcript.
figure-4-11-source.wav

figure-4-11-conversion.wav

figure-4-11-interpolation.wav

figure-4-11-manual.wav

Fine-grained pronunciation editing is also a useful task for further inspecting the

behavior of my proposed pronunciation distance (∆PPG; Section 2.1.4) to capture frame-

level pronunciation differences during pronunciation editing. I use as a baseline the speech

distance proposed by Bartelds et al. [8], which uses the L2 distance between wav2vec 2.0 la-

tents and outperforms spectral-based and transcript-based speech variation distances [8].



136

My audio is already aligned, so I omit the dynamic time warping (DTW) step used to per-

form alignment. Figure 4.11 (bottom) demonstrates the behavior of each pronunciation

distance during voice conversion (left), pronunciation interpolation (center), and manual

pronunciation editing (right) relative to the original pronunciation (and not the PPGs

used as input; in that case, no corresponding wav2vec 2.0 distance exists for comparison).

Focus on the edit region around 150 milliseconds (i.e., the transparent gray rectangle).

When no edit to the PPG is performed, (left), all the measures of pronunciation difference

indicate a low difference. When edits were done to the PPGs (middle and right pan-

els), only my proposed distance increases to indicate a high pronunciation distance, while

the wav2vec 2.0 baseline remains low. Wav2vec 2.0 further assigns high pronunciation

distance to unedited regions, such as the phoneme “m” that occurs between 50 and 120

milliseconds. Wav2vec 2.0 [7] fails to detect clear pronunciation differences captured by

my proposed, interpretable pronunciation distance based on the JS-divergence between

PPGs.

In my prior work [15], I exemplify further editing capabilities that can be built

utilizing my proposed fine-grained pronunciation editing: (1) interpretable,

regex-based accent conversion and (2) automatic onomatopoeia. In (1), an ac-

cent is encoded as a set of sequential substitution rules that map monophone, diphone,

triphone, etc. sequences in the source accent to corresponding phoneme sequences in

the target accent. Then, a speech recording is encoded in my proposed pronunciation

and the set of phoneme substitution rules is applied to the SPPG, where substitutions

are implemented by swapping and reallocating the inferred probabilities of corresponding

phonemes. The challenge with this method is the need for either an expert to hand-craft a
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general rule set for conversion between two accents or an automated method for learning a

rule set between two accents. However, the benefit is interpretability: speech accents are

the product of a shared cultural background, and an interpretable representation of pro-

nunciation enables accent conversion with a high degree of transparency that provides an

improved means for verification by experts. I currently create a separate set of sequential

substitution rules catered to each utterance.

Figure 4.12 demonstrates an example, wherein I manually edit the South African

(Cape Town) accent of a female speaker to align with a American Midwestern accent

using my proposed, interpretable regex-based accent conversion. I provide my manually-

specified sequential substitution rules in the figure caption. Focus on the SPPGs, which

overlay the edited SPPGs (blue) and SPPGs inferred from accent-edited speech (red).

Violet indicates successful editing of the pronunciation. Interestingly, I find that—while

the synthesized audio does sound significantly closer to the target accent—the SPPG

inferred from accent-edited speech is a mix between the original and target accent. This

indicates that the speech synthesis model has—to some extent—learned speaker-specific

transition probabilities between phonemes. This can be addressed via few-shot learning

on a significantly larger dataset with many more speakers—which also removes the need

for speaker adaptation (Section 4.5). I further discuss this direction for future work in

Section 5.1.5.

In Figure 4.13, I provide an example of performing automatic onomatopoeia, in which

a non-speech source sound is encoded in my proposed representation and synthesis is

performed in the voice of a target speaker. This could be used, e.g., to produce large

datasets of vocal imitations suitable for improving query-by-voice systems [122, 76], in
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Figure 4.12. Accent conversion example | I (1) encode an example
speech utterance in my proposed representation (Chapter 2), (2) perform
my proposed regex-based accent conversion to manually convert from the
original, South African accent to an American Midwestern accent, (3)
perform speech synthesis to produce accent-edited speech, (4) encode the
accent-edited speech in my representation, and (6) overlay the speech rep-
resentation inferred from synthesized speech on the input representation to
demonstrate reconstruction of both prosody and target pronunciation dur-
ing accent conversion. My sequential rule set for this example is as follows:
(1) reallocate([“dh”, “ah”], [“th”, “ah”]), (2) reallocate([“n”, “aa”,
“t”], [“n”, “ah”, “t”]), (3) reallocate(“er”, “r”), (4) reallocate(“ae”,
“eh”), where reallocate(b, c) reallocates all probability in regex matches
for phoneme sequence b to corresponding phonemes in phoneme sequence
c.
Blue SPPGs (top) are inputs, red SPPGs are inferred from accent-edited
speech, and violet indicates accurate reconstruction. For pitch, periodicity,
and A-weighted loudness, the features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-12-0082-000322-original.wav

figure-4-12-0082-000322-midwestern.wav
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Figure 4.13. Automatic onomatopoeia example | I (1) encode an ex-
ample recording of cat vocalizations in my proposed representation (Chap-
ter 2), (2) perform speech synthesis using the speaker index of a target
speaker to produce a vocal imitation, (3) encode the synthesized vocal im-
itation in my representation, and (4) overlay the speech representation in-
ferred from synthesized speech on the input representation to demonstrate
reconstruction of my speech representation during vocal imitation.
Blue SPPGs (top) are inputs, red SPPGs are inferred from synthesized
speech, and violet indicates accurate reconstruction. For pitch, periodicity,
and A-weighted loudness, the features inferred from synthesized speech are
shown in black, while input features are green when the inferred feature
is within an error threshold and red when outside that threshold. I use a
threshold of 50 cents for pitch, 0.1 for periodicity, and 6 dBA for volume.
figure-4-13-source.wav

figure-4-13-0082-000322-target.wav

figure-4-13-0082-000322-imitation.wav

which a user searches a large database of audio recordings via vocal imitation of the

desired sound.
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4.8. Ablations

I demonstrate that design choices presented throughout my dissertation improve speech

editing accuracy via ablations. I report the average objective metrics (Section 3.3.1) over

a set of modifications: pitch-shifting (Section 4.1), time-stretching (Section 4.2), editing

the timbral correlates of volume (Section 4.3), and reconstruction (Section 3.4).

Table 4.5 (Ablations) shows that each of my design decisions contributes to the

efficacy of my proposed system, with Viterbi-decoded pitch (Section 2.2) and multi-band

A-weighted loudness (Section 2.4) being particularly impactful. The most telling sign of

the efficacy of my design decisions is the concurrent improvement of objective metrics

not immediately impacted by the design decision. For example, Viterbi-decoded pitch

and multi-band loudness improve all metrics—not just pitch metrics or loudness metrics,

respectively. This is a strong indicator that my methods are improving speech synthesis

and editing rather than just providing a cleaner representation. This also validates my

hypotheses about the existing presence of entanglement between features, as well as that

noise in unvoiced pitch frames is not being ignored during training: unvoiced pitch frames

must be carefully handled to prevent overfitting. Likewise, SPPGs remove noise in low-

probability phoneme categories and improve all metrics—not just pronunciation metrics.

While my proposed data augmentation and variable-width bins do not improve all

metrics, they both improve pitch and loudness accuracies—and my data augmentation

demonstrates further utility in enabling and improving the editing of both the timbral

correlates of volume (Section 4.3) and spectral balance (Section 4.4). The slight drop

in PPG performance caused by my data augmentation can be explained due to changes

in spectral balance and loudness induced by data augmentation. For example, vowels
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are distinguished by variations in relative formant energies and positions, and the “silent”

phoneme category indicates audio below a certain threshold. This induces a slightly harder

learning problem, in which the model must learn the conditional distribution of the audio

given slightly entangled SPPG and augmentation parameters rf and rl (Section 3.2.1)—

as opposed to only the SPPG. In practice, my model seems highly capable of learning

this more challenging conditional distribution, and any slight entanglement is offset by

improvements in other objective metrics as well as novel editing capabilities.

One additional advantage of my proposed variable-width pitch bins is training sta-

bility: while my speech synthesis model can successfully train to convergence with or

without my proposed variable-width pitch bins when using 256 bins, increasing the bin

count to 512 induces divergence only when not using my variable-width pitch bins due

to the increase in the number of infrequently used bins. While one could add more data

to attempt to increase the utilization of infrequently used bins, the pitch distribution of

natural speech is inherently bimodal (Figure 3.1): increasing utilization of infrequently

used bins by adding more data also increases the support of the distribution, requiring

either new, infrequently used bins or truncation of the pitch distribution. My proposed

variable-width pitch bins addresses these issues, making them well-suited for concurrently

scaling up the amount of training data and number of pitch bins in future work.

Comparing to objective results of only performing speech reconstruction (Table 3.1),

my proposed representation and design decisions demonstrate a diverse set of speech syn-

thesis and editing capabilities that are approaching the comparable objective metrics to

speech reconstruction. The difference between objective metrics for speech editing and ob-

jective metrics for speech reconstruction quantifies the remaining amount of entanglement
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Section ∆¢ ↓ ∆ϕ ↓ ∆dBA↓ ∆PPG↓
Proposed – 19.7 .068 1.48 .144
w/o SPPG 2.1.2 19.9 .070 1.62 .149
w/o Viterbi decoding 2.2.4 31.9 .071 1.64 .147
w/o multi-band loudness 2.4 23.5 .074 1.96 .161
w/o augmentation 3.2.1 23.6 .068 1.69 .143
w/o variable-width bins 3.2.2 20.7 .068 1.61 .144
w/o all (cumulative) – 39.2 .075 1.88 .166

Table 4.5. Objective evaluation of ablations | Non-cumulative abla-
tions of the speech editing accuracy of methods proposed throughout my
dissertation as well as the section in which they are described. Reported
results are averages over pitch-shifting (by ±600 cents), time-stretching (by
factors

√
2 and

√
2/2), loudness edits (by ±5 dBA), and reconstruction. ↑

indicates that higher is better and ↓ indicates that lower is better.

in my proposed representation. Clearly, my design decisions have significantly reduced

entanglement; but a small amount of entanglement remains. I hypothesize this remaining

entanglement can be addressed by scaling up the data and model capacity, improving

the quality of PPGs, performing joint self-supervised discrete representation learning of

residual features, and investigating multi-band periodicity.
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CHAPTER 5

Conclusion

Content creators of film, video games, podcasts, and social media necessitate a diverse

set of high-fidelity tools to analyze, enhance, tune, and otherwise modify their speech con-

tent according to their creative and technical vision. In this dissertation, I have described

my research on the topic of speech representation and editing and my resulting speech

editing system that addresses needs of these content creators. In Chapter 2, I propose

a novel speech representation that addresses the need for an interpretable representation

of speech suitable for disentangling and visualizing the speech attributes of interest. In

Chapter 3, I describe how off-the-shelf neural text-to-speech and vocoding systems can be

utilized in conjunction with my proposed representation to perform high-fidelity neural

speech synthesis. In Chapter 4, I demonstrate new or improved speech editing capa-

bilities made possible by my proposed speech representation and speech editing system.

Together, my contributions set the foundations for speech editing software that expedited

and advances the workflows of speech content creators responsible for the development

of many of the primary means of communication (e.g., film, podcasts, and social media)

used today. The remainder of this chapter describes novel research directions and speech

technologies made possible by my research contributions (Section 5.1), as well as steps

I have taken to ensure the reproducibility of all experimental results presented in my

dissertation (Section 5.3) and considerations for ethical use of the technology I develop. I

have been consistently delighted by the creative and technical utilizations of my proposed
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speech technologies by research labs, industry labs, and individuals. I look forward to

continuing to advance the technologies I have contributed and further uncovering their

potential.

5.1. Future work

My contributions presented in this dissertation advance the state-of-the-art of neural

speech editing. They also pave the way for further contributions both within the domain

of neural speech editing as well as other research domains. In this section, I discuss

avenues for future work relevant to my contributions.

5.1.1. Text-to-speech and hierarchical speech editing

Unlike the Mel spectrogram or self-supervised learning (SSL) representations such as

wav2vec 2.0 [7, 101] or EnCodec [18], my proposed representation (Chapter 2) has not

yet been used as an intermediary within a text-to-speech (TTS) system. This would

create a two-tiered editing hierarchy in which speech content creators can edit speech by

either changing the words in the speech transcript or performing any of the edits afforded

by my system. Two options exist for incorporating my representation in a TTS system:

(1) jointly train a representation generator and a duration predictor that generate speech

in my proposed representation from lexical inputs or (2) train two “conversion” neural

networks that convert my proposed representation to a state-of-the-art SSL representation

and vice versa. It is not yet clear to me which will produce superior results.

Consider a TTS system that utilizes my proposed representation as an intermediary

between text and speech audio. Such a system takes lexical inputs at, e.g., the phoneme
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or word resolution. This makes such systems amenable to word-level conditioning and

control. Provided an alignment with the lexical features, my proposed representation can

be used to perform phoneme- or word-resolution editing of pitch, duration, loudness, and

pronunciation. However, there are additional word- and phoneme-level attributes that

are either not captured by this factorization (e.g., vocal fry or falsetto) or are entan-

gled abstractions of one or more of these attributes (e.g., prominence). I have developed

a streamlined system for producing the crowdsourced or automatic annotations of such

word- and phoneme-level attributes that are prerequisite to fine-grained control of, e.g.,

prominence, vocal fry, falsetto, and mispronunciations [77]. More generally, my repre-

sentation can be thought of a low-level, fine-grained intermediary representation on top

of which more abstract representations of speech and speech editing capabilities can be

built. This provides the advantage of enabling an interpretable analysis of abstract speech

representations. For example, I can increase the prominence of a random word in each

utterance in a speech dataset, measure the average impact on prosodic features, and

compare this to the prosodic variations of speech with ground-truth human prominence

annotations to evaluate the efficacy of prominence control.

5.1.2. User interfaces for speech representation and editing

While my work develops the underlying technology for a speech editing system, my

command-line interfaces and Python application programming interfaces are not the most

efficient or intuitive workflow for most creative professionals. However, because my pro-

posed technology introduces fundamentally new ways to edit speech, the optimal graphical

user interface is not yet known. For example, when editing pronunciation, do users prefer
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mimicking the desired pronunciation, drawing on a PPG, or a mix of both? Does such an

interface offer blind audio engineers a simpler experience in navigating or editing speech

or music? What is a more intuitive phoneme set for a PPG, the international phonetic

alphabet (IPA) or CMU pronunciation dictionary? Does this depend on the user (e.g.,

voice actors or clinical speech pathologists)? Many such design considerations can be

explored to further the utility of this technology in the hands of creative and medical

professionals.

5.1.3. Real-time accent and pronunciation coaching

Voice actors commonly undergo training to learn to mimic accents indicative of particular

regions, times, ethnicities, or social classes. Emigrating L2 language learners often strive

to adopt the native accent to facilitate intelligibility. Patients with speech and language

disorders undergo significant physical therapy to rehabilitate the vocal mechanism and

corresponding neurological pathways. Accurate representations of the pronunciation of

speech can help these individuals towards their goal of speaking confidently. Figure 4.11

(top) demonstrates two PPGs overlaid on top of one another, showing the differences

between two pronunciations of the same speech. One could imagine one of these pronun-

ciations being a randomly selected speech utterance spoken by a reference speaker, while

the other is an attempt by the trainee to replicate the pronunciation. Using dynamic time

warping to align the pronunciations, it is possible to both visualize pronunciation errors

and produce a pronunciation distance score. In other words, it is now possible to build

a “Guitar Hero” for pronunciation training for voice actors, singers, language learners,

and patients with speech and language disorders. Technical challenges for producing such
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an application include high-fidelity, causal, low-latency SPPG inference suitable for real-

time streaming and a robust method for performing online dynamic time warping [55] of

partial sequences [12].

5.1.4. Query-by-onomatopoeia

My proposed PPG representation enables automatic onomatopoeia, in which an arbitrary

audio recording can be rendered in a person’s voice, with phonemes and pitch computed

from the arbitrary recording using my proposed PPG (Section 2.1) and pitch (Section 2.2)

estimators. For example, this can be used to have a human mimic the sound of a cat or

a car alarm. This can be used to acquire data for the inverse problem, in which a human

mimics a sound with their voice and a computer retrieves corresponding real sounds.

Perhaps more generally, PPGs offer an interpretable way to encode and transfer non-

written languages, such as, e.g., animal vocalizations. Thus, such representations may

be useful not only for transferring animal sounds to human speech, but also representing

and further understanding animal language. This is potentially a useful tool for sound

designers of film, video games, and music, who need intuitive methods to traverse large

sound libraries to select an appropriate audio recording for a given segment of film or

music or a particular event in a video game.

5.1.5. Scaling up for performance and few-shot generalization

One current drawback of my system is the need for a few minutes of audio from the target

speaker. Prior research demonstrates that high-fidelity generalization to new speakers is

possible with a minute of audio or less [49]. However, high-fidelity speech synthesis models
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that generalize to new speakers given limited context are typically the result of discrete,

self-supervised speech representations trained using large servers of recent GPU models

on tens of thousands of hours of speech data for days to weeks. Larger datasets also

typically increase model performance across all metrics—especially when, e.g., the model

capacity is also appropriately scaled. Provided access to more compute resources, this is

a viable direction for future work.

5.1.6. Novel use cases for Viterbi decoding

My GPU implementation of Viterbi decoding (Section 2.2.4) is fast enough to enable novel

applications. For example, non-autoregressive speech synthesizers such as HiFi-GAN [40]

infer single parameters for each sample, which means each sample is being modeled by

a univariate mean of a normal distribution. However, the conditional distribution of the

audio waveform given input acoustic features is multi-modal due to stochasticity in un-

voiced regions, unspecified starting phases at the beginning of each voiced region, and

background noise; the success of HiFi-GAN is only due to the high mutual information

(low conditional entropy) of the input representation (e.g., Mels or our proposed represen-

tation) relative to the speech waveform and the mode-selecting capabilities of GANs. My

fast Viterbi decoding implementation makes it feasible to train a multivariate model for

each sample and only optimize along the optimal path as determined by Viterbi decoding.

For example, the generator could predict a categorical distribution over quantized wave-

form sample values, Viterbi decoding could be used to decode the generated waveform

as the optimal path, and the optimal waveform could be passed into a discriminator to
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further leverage the efficacies of adversarial losses. Whether or not this improved per-

formance, this would allow us to visualize the joint distribution of a non-autoregressive

sample-resolution generative model to, e.g., explicitly visualize the multi-modality induced

by ambiguity in starting phase.

In addition, Viterbi decoding could be applied to my SPPG representation (Sec-

tion 2.1) to perform transcript-free phoneme alignment—or combined with a transcript

to further improve phoneme alignment performance.

5.1.7. Interpretable speech coding

Speech coding is the task of compressing the storage requirements of a speech signal

for efficient transmission. Recent state-of-the-art methods for speech and audio coding

utilize two deep neural networks: one (the encoder) that learns a compressed represen-

tation of the audio and another (the decoder) that learns to invert the representation

and reconstruct the audio waveform. The current state-of-the-art audio coding method

is the Descript audio codec (DAC) [45], which compresses 16-bit 22.05 kHz audio at a

compression rate of approximately 45x (1 kbps).

My proposed representation currently encodes speech using 50 16-bit floating point

numbers per frame, resulting in a compression rate of approximately 5.0x (68.75 kbps).

However, no effort has been made to efficiently encode the sparsity in the SPPGs (Sec-

tion 2.1.2). I predict an average of less than five phonemes need to be represented at each

frame, which would produce a compression rate of approximately 15.7x (22.44 kbps). As

well, the number of bands in the multi-band loudness can be tuned based on storage
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requirements (at the cost of some performance). Finally, variable-rate temporal com-

pression [19] can be used to compress the pitch, periodicity, and loudness. This would

produce a speech coding representation that not only significantly outperforms the current

state-of-the-art audio coding representation, but is interpretable, editable, and invariant

to sampling rate. To see that my representation is invariant to sampling rate, note that

SPPGs (Section 2.1) are computed at a sampling rate of 16 kHz, pitch (Section 2.2) and

periodicity (Section 2.3) are computed at 8 kHz, A-weighted loudness (Section 2.4) is com-

puted at 22.05 kHz, and my speech synthesizer currently produces speech with a 22.05

kHz sampling rate; the same techniques used to interpolate my representation during

time-stretching (Section 4.2) are also used to align the features of my speech represen-

tation prior to training or synthesis. This can be used to synthesize high-fidelity audio

from low-fidelity audio features, or to allow a client receiving encoded speech to choose

playback fidelity (i.e., the speech vocoder) best suited for their device’s capabilities. This

also allows the flexibility of either (1) incurring an O(1) cost of sending speaker-adapted

(Section 4.5) model weights corresponding to a target speaker or (2) not sending speaker-

related features at all, which could be used for low-bandwidth, high-fidelity, real-time

speaker anonymization if combined with the causal SPPGs also required for real-time

accent and pronunciation training using my proposed representation (Section 5.1.3).

5.2. Ethics statement

Speech editing should require the informed consent of the person’s voice being edited.

By informed consent, I refer to three factors: (1) consent that one’s voice is to be edited,

(2) consent for each of the specific types of edits being performed, and (3) consent to the
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manner of distribution of the edited speech content. Consent for each specific type of edit

(2) addresses the concerns of voice actors who may be comfortable with, e.g., some fine-

tuning of prosody or pronunciation for intelligibility, emphasis, or contextual naturalness,

but may object to the editing of their voice to contain certain emotions or words (e.g.,

profanity), or may outright object to any edits to the lexical speech content and allow

edits to only non-lexical speech attributes. Consent to the manner of distribution (3)

addresses the placement of consensually edited speech in inappropriate contexts that may

alter listeners’ perceptions.

Enforcing that speech editing technology is utilized for only consensual voice editing

requires both regulatory measures as well as methods for detecting edited speech. Given

the rapid advancement of the quality of generative machine learning, I believe it is in-

evitable that the differences between real and edited speech will be imperceptible to both

humans and automated detection methods. Instead, regulatory measures should require

speech editing software to perform multiple safeguards to protect against bad actors with

varying levels of technical expertise. For example, a näıve bad actor unfamiliar with file

metadata could be caught simply by encoding metadata that says what software was

used for editing and when. More experienced bad actors could be detected using content

authenticity measures such as watermarking, wherein edited speech is rendered with an

inaudible fingerprint that can be used to recover what software was used for editing and

when [86]. The Content Authenticity Initiative [1] demonstrates another method that

utilizes blockchain to trace the set of transactions originating from a recording device that

does not permit editing (e.g., a camera). Actualizing the societal value of this technology

requires collaboration between academia, industry, and government.
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5.3. Reproducibility

Reproducibility is imperative for efficient and reliable research progress. To that end,

all of the code and model weights produced in this work are not only open-source and

documented, but have been packaged and distributed via PyPi to be pip-installable. Each

of these repositories contains all of the relevant code and configurations to reproduce all

experimental results presented Information on the relevant code libraries is provided in

Table 5.1.

Name Description URL
penn [72] Pitch and periodicity estima-

tion (Sections 2.2-2.3)
github.com/interactiveaudiolab/penn

ppgs [15] Sparse phonetic posteriorgram
inference (Section 2.1)

github.com/interactiveaudiolab/ppgs

promonet [71] Speech prosody and pronunci-
ation editing (Chapters 3-4)

github.com/maxrmorrison/promonet

reseval [79] Reproducible subjective evalu-
ation (Section 3.3.2)

github.com/reseval/reseval

Table 5.1. Open-source, pip-installable code repositories containing my
work described in my dissertation. Does not include my support code
libraries (e.g., torchutil), my libraries containing baseline models (e.g.,
torchcrepe or psola), or my fast Viterbi decoding implementation (torbi;
Section 2.2.4), which I plan to release within PyTorch [87] instead of dis-
tributing via PyPi.

https://github.com/interactiveaudiolab/penn
https://github.com/interactiveaudiolab/ppgs
https://github.com/maxrmorrison/promonet
https://github.com/reseval/reseval
https://github.com/maxrmorrison/torchutil
https://github.com/maxrmorrison/torchcrepe
https://github.com/maxrmorrison/psola
https://github.com/maxrmorrison/torbi
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APPENDIX A

List of symbols

Unlisted symbols are not used outside the context they are introduced

Symbol Description

a ∈ R The A-weighted loudness (in dBA) corre-

sponding to a frame of audio (Section 2.4)

a1, . . . , aT ∈ RT T adjacent frames of A-weighted loudness;

also called a “loudness contour”

f ∈ R+ A center frequency of a pitch bin used when

performing pitch estimation (Section 2.2)

h ∈ [0, 1] One frame of periodicity, which measures the

extent to which the corresponding frame of

audio contains pitch (Section 2.3)

h1, . . . , hT ∈ RT T adjacent frames of periodicity; also called

a “periodicity contour”

rf ∈ R+ A ratio produced via resampling-based data

augmentation (Section 3.2.1) that enables

coarse-grained editing of the relative energy

between high- and low-formants (Section 4.4)
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Symbol Description

rl ∈ R+ A ratio produced via volume-scaling data

augmentation (Section 3.2.1) that improves

fine-grained editing of perceptual loudness

(Section 4.3)

v ∈ {0, 1} A binary indicator of whether a frame of

speech is voiced (i.e., h > α) (Section 2.3.1)

v1, . . . , vT ∈ RT T adjacent frames of binary voicing indica-

tors

x ∈ RW One frame of an audio waveform, consisting

of W samples

x1, . . . , xT ∈ RW×T T adjacent frames of an audio waveform,

each consisting of W samples and offset from

the previous frame by H samples

y ∈ R One frame of pitch in units of Hz (Sec-

tion 2.2)

y1, . . . , yT ∈ RT T adjacent frames of pitch; also called a

“pitch contour”

D ∈ R|F |×T The pitch posteriorgram formed by concate-

nating posterior distributions inferred by a

neural pitch estimator for adjacent frames of

audio x1, . . . , xT
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Symbol Description

F = {f1, . . . , f|F |} A set of pitch bins, where each pitch bin rep-

resents a unique frequency range and have

center frequencies (Section 2.2)

G ∈ R|P |×T The phonetic posteriorgram on phoneme set

P corresponding to adjacent frames of audio

x1, . . . , xT

Hi ∈ RT The time-varying frequency contour of har-

monic i

P = {“aa”, “ae”,. . . , “zh”} The set of phonemes used for phonetic pos-

teriorgram inference (Section 2.1)

S ∈ R|Ω|×T The magnitude spectrogram (Section 1.1.2)

T ∈ N The number of time frames in an audio signal

W ∈ N The window size, or the number of audio

samples in one frame

α ∈ [0, 1] A voiced/unvoiced threshold, at or below

which a periodicity value h is considered to

be unvoiced

γ ∈ R+ Hyperparameter controlling the relative con-

tribution of phoneme similarity matrix S

to the PPG pronunciation distance (Sec-

tion 2.1.4)

λ ∈ R+ Weight used to class-balance a phonetic pos-

teriorgram (PPG)(Section 2.1.4)
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Symbol Description

ω ∈ R A discrete analysis frequency used when per-

forming short-time fast Fourier transforms

(FFTs) (Section 1.1.2)

Ω = {ω1, . . . , ω|Ω|} The discrete analysis frequencies used when

performing short-time fast Fourier trans-

forms (FFTs) (Section 1.1.2)

A ∈ R → R The A-weighted transformation of the fre-

quency set based on human perceptual data

(Section 2.4)

S ∈ R|P |×|P | The acoustic phoneme similarity matrix in-

ferred by a phonetic posteriorgram model

(Section 2.1.4; Figure 2.4)

V = {t : vt == 1} The set of time frame indices t ∈ 1, . . . , T

during which the speech is voiced (i.e., ht >

α) (Section 2.3.1)

∆dBA ∈ R× R → R The RMSE between two A-weighted loud-

ness contours (Section 3.3.1)

∆PPG ∈ R× R → R My proposed PPG distance (Section 2.1.4)

based on a weighted JS divergence between

sparse phonetic posteriorgrams

∆¢ ∈ R× R → R The distance in cents between two pitch val-

ues y, ŷ; ∆¢(y, ŷ) =
∣∣1200 log2(y/ŷ)

∣∣ (Sec-

tion 3.3.1)
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Symbol Description

∆ϕ ∈ R× R → R My proposed RMSE periodicity metric

between entropy-based periodicity (Sec-

tion 3.3.1)
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